Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opabex2 | Structured version Visualization version GIF version |
Description: Condition for an operation to be a set. (Contributed by Thierry Arnoux, 25-Jun-2019.) |
Ref | Expression |
---|---|
opabex2.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
opabex2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
opabex2.3 | ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) |
opabex2.4 | ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) |
Ref | Expression |
---|---|
opabex2 | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabex2.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | opabex2.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | xpexg 6858 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
4 | 1, 2, 3 | syl2anc 691 | . 2 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
5 | df-opab 4644 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
6 | simprl 790 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)) → 𝑧 = 〈𝑥, 𝑦〉) | |
7 | opabex2.3 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝜓) → 𝑥 ∈ 𝐴) | |
8 | opabex2.4 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝜓) → 𝑦 ∈ 𝐵) | |
9 | opelxpi 5072 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) | |
10 | 7, 8, 9 | syl2anc 691 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) |
11 | 10 | adantrl 748 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐵)) |
12 | 6, 11 | eqeltrd 2688 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)) → 𝑧 ∈ (𝐴 × 𝐵)) |
13 | 12 | ex 449 | . . . . 5 ⊢ (𝜑 → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) → 𝑧 ∈ (𝐴 × 𝐵))) |
14 | 13 | exlimdvv 1849 | . . . 4 ⊢ (𝜑 → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓) → 𝑧 ∈ (𝐴 × 𝐵))) |
15 | 14 | abssdv 3639 | . . 3 ⊢ (𝜑 → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} ⊆ (𝐴 × 𝐵)) |
16 | 5, 15 | syl5eqss 3612 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ⊆ (𝐴 × 𝐵)) |
17 | 4, 16 | ssexd 4733 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝜓} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∃wex 1695 ∈ wcel 1977 {cab 2596 Vcvv 3173 〈cop 4131 {copab 4642 × cxp 5036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-opab 4644 df-xp 5044 df-rel 5045 |
This theorem is referenced by: legval 25279 rfovcnvfvd 37321 1wlksv 40824 |
Copyright terms: Public domain | W3C validator |