MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regr1lem2 Structured version   Visualization version   GIF version

Theorem regr1lem2 21353
Description: A Kolmogorov quotient of a regular space is Hausdorff. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
regr1lem2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Haus)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem regr1lem2
Dummy variables 𝑚 𝑛 𝑤 𝑧 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . . . . 10 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
2 simplll 794 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝐽 ∈ (TopOn‘𝑋))
3 simpllr 795 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝐽 ∈ Reg)
4 simplrl 796 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑧𝑋)
5 simplrr 797 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑤𝑋)
6 simprl 790 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → 𝑎𝐽)
7 simprr 792 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))
81, 2, 3, 4, 5, 6, 7regr1lem 21352 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑧𝑎𝑤𝑎))
9 3ancoma 1038 . . . . . . . . . . . . . 14 (((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑚𝑛) = ∅))
10 incom 3767 . . . . . . . . . . . . . . . 16 (𝑚𝑛) = (𝑛𝑚)
1110eqeq1i 2615 . . . . . . . . . . . . . . 15 ((𝑚𝑛) = ∅ ↔ (𝑛𝑚) = ∅)
12113anbi3i 1248 . . . . . . . . . . . . . 14 (((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
139, 12bitri 263 . . . . . . . . . . . . 13 (((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
14132rexbii 3024 . . . . . . . . . . . 12 (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
15 rexcom 3080 . . . . . . . . . . . 12 (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑛 ∈ (KQ‘𝐽)∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
1614, 15bitri 263 . . . . . . . . . . 11 (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑛 ∈ (KQ‘𝐽)∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
177, 16sylnib 317 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → ¬ ∃𝑛 ∈ (KQ‘𝐽)∃𝑚 ∈ (KQ‘𝐽)((𝐹𝑤) ∈ 𝑛 ∧ (𝐹𝑧) ∈ 𝑚 ∧ (𝑛𝑚) = ∅))
181, 2, 3, 5, 4, 6, 17regr1lem 21352 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑤𝑎𝑧𝑎))
198, 18impbid 201 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ (𝑎𝐽 ∧ ¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))) → (𝑧𝑎𝑤𝑎))
2019expr 641 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) ∧ 𝑎𝐽) → (¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → (𝑧𝑎𝑤𝑎)))
2120ralrimdva 2952 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) → (¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → ∀𝑎𝐽 (𝑧𝑎𝑤𝑎)))
221kqfeq 21337 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑦𝐽 (𝑧𝑦𝑤𝑦)))
23 elequ2 1991 . . . . . . . . . . 11 (𝑦 = 𝑎 → (𝑧𝑦𝑧𝑎))
24 elequ2 1991 . . . . . . . . . . 11 (𝑦 = 𝑎 → (𝑤𝑦𝑤𝑎))
2523, 24bibi12d 334 . . . . . . . . . 10 (𝑦 = 𝑎 → ((𝑧𝑦𝑤𝑦) ↔ (𝑧𝑎𝑤𝑎)))
2625cbvralv 3147 . . . . . . . . 9 (∀𝑦𝐽 (𝑧𝑦𝑤𝑦) ↔ ∀𝑎𝐽 (𝑧𝑎𝑤𝑎))
2722, 26syl6bb 275 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝑤𝑋) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑎𝐽 (𝑧𝑎𝑤𝑎)))
28273expb 1258 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑎𝐽 (𝑧𝑎𝑤𝑎)))
2928adantlr 747 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ∀𝑎𝐽 (𝑧𝑎𝑤𝑎)))
3021, 29sylibrd 248 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) → (¬ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅) → (𝐹𝑧) = (𝐹𝑤)))
3130necon1ad 2799 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) ∧ (𝑧𝑋𝑤𝑋)) → ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅)))
3231ralrimivva 2954 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅)))
331kqffn 21338 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
3433adantr 480 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → 𝐹 Fn 𝑋)
35 neeq1 2844 . . . . . . . 8 (𝑎 = (𝐹𝑧) → (𝑎𝑏 ↔ (𝐹𝑧) ≠ 𝑏))
36 eleq1 2676 . . . . . . . . . 10 (𝑎 = (𝐹𝑧) → (𝑎𝑚 ↔ (𝐹𝑧) ∈ 𝑚))
37363anbi1d 1395 . . . . . . . . 9 (𝑎 = (𝐹𝑧) → ((𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)))
38372rexbidv 3039 . . . . . . . 8 (𝑎 = (𝐹𝑧) → (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)))
3935, 38imbi12d 333 . . . . . . 7 (𝑎 = (𝐹𝑧) → ((𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
4039ralbidv 2969 . . . . . 6 (𝑎 = (𝐹𝑧) → (∀𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑏 ∈ ran 𝐹((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
4140ralrn 6270 . . . . 5 (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑧𝑋𝑏 ∈ ran 𝐹((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
42 neeq2 2845 . . . . . . . 8 (𝑏 = (𝐹𝑤) → ((𝐹𝑧) ≠ 𝑏 ↔ (𝐹𝑧) ≠ (𝐹𝑤)))
43 eleq1 2676 . . . . . . . . . 10 (𝑏 = (𝐹𝑤) → (𝑏𝑛 ↔ (𝐹𝑤) ∈ 𝑛))
44433anbi2d 1396 . . . . . . . . 9 (𝑏 = (𝐹𝑤) → (((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅) ↔ ((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅)))
45442rexbidv 3039 . . . . . . . 8 (𝑏 = (𝐹𝑤) → (∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅) ↔ ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅)))
4642, 45imbi12d 333 . . . . . . 7 (𝑏 = (𝐹𝑤) → (((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
4746ralrn 6270 . . . . . 6 (𝐹 Fn 𝑋 → (∀𝑏 ∈ ran 𝐹((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
4847ralbidv 2969 . . . . 5 (𝐹 Fn 𝑋 → (∀𝑧𝑋𝑏 ∈ ran 𝐹((𝐹𝑧) ≠ 𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
4941, 48bitrd 267 . . . 4 (𝐹 Fn 𝑋 → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
5034, 49syl 17 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)) ↔ ∀𝑧𝑋𝑤𝑋 ((𝐹𝑧) ≠ (𝐹𝑤) → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)((𝐹𝑧) ∈ 𝑚 ∧ (𝐹𝑤) ∈ 𝑛 ∧ (𝑚𝑛) = ∅))))
5132, 50mpbird 246 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅)))
521kqtopon 21340 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
5352adantr 480 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ (TopOn‘ran 𝐹))
54 ishaus2 20965 . . 3 ((KQ‘𝐽) ∈ (TopOn‘ran 𝐹) → ((KQ‘𝐽) ∈ Haus ↔ ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
5553, 54syl 17 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → ((KQ‘𝐽) ∈ Haus ↔ ∀𝑎 ∈ ran 𝐹𝑏 ∈ ran 𝐹(𝑎𝑏 → ∃𝑚 ∈ (KQ‘𝐽)∃𝑛 ∈ (KQ‘𝐽)(𝑎𝑚𝑏𝑛 ∧ (𝑚𝑛) = ∅))))
5651, 55mpbird 246 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐽 ∈ Reg) → (KQ‘𝐽) ∈ Haus)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  cin 3539  c0 3874  cmpt 4643  ran crn 5039   Fn wfn 5799  cfv 5804  TopOnctopon 20518  Hauscha 20922  Regcreg 20923  KQckq 21306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-qtop 15990  df-top 20521  df-topon 20523  df-cld 20633  df-cls 20635  df-haus 20929  df-reg 20930  df-kq 21307
This theorem is referenced by:  regr1  21363
  Copyright terms: Public domain W3C validator