MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regr1lem2 Structured version   Unicode version

Theorem regr1lem2 19992
Description: A Kolmogorov quotient of a regular space is Hausdorff. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
regr1lem2  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  (KQ `  J )  e.  Haus )
Distinct variable groups:    x, y, J    x, X, y
Allowed substitution hints:    F( x, y)

Proof of Theorem regr1lem2
Dummy variables  m  n  w  z  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . . . . 10  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
2 simplll 757 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  J  e.  (TopOn `  X ) )
3 simpllr 758 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  J  e.  Reg )
4 simplrl 759 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  z  e.  X
)
5 simplrr 760 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  w  e.  X
)
6 simprl 755 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  a  e.  J
)
7 simprr 756 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) )
81, 2, 3, 4, 5, 6, 7regr1lem 19991 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  ( z  e.  a  ->  w  e.  a ) )
9 3ancoma 980 . . . . . . . . . . . . . 14  |-  ( ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) )  <->  ( ( F `  w )  e.  n  /\  ( F `  z )  e.  m  /\  (
m  i^i  n )  =  (/) ) )
10 incom 3691 . . . . . . . . . . . . . . . 16  |-  ( m  i^i  n )  =  ( n  i^i  m
)
1110eqeq1i 2474 . . . . . . . . . . . . . . 15  |-  ( ( m  i^i  n )  =  (/)  <->  ( n  i^i  m )  =  (/) )
12113anbi3i 1189 . . . . . . . . . . . . . 14  |-  ( ( ( F `  w
)  e.  n  /\  ( F `  z )  e.  m  /\  (
m  i^i  n )  =  (/) )  <->  ( ( F `  w )  e.  n  /\  ( F `  z )  e.  m  /\  (
n  i^i  m )  =  (/) ) )
139, 12bitri 249 . . . . . . . . . . . . 13  |-  ( ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) )  <->  ( ( F `  w )  e.  n  /\  ( F `  z )  e.  m  /\  (
n  i^i  m )  =  (/) ) )
14132rexbii 2966 . . . . . . . . . . . 12  |-  ( E. m  e.  (KQ `  J ) E. n  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  ( F `  w
)  e.  n  /\  ( m  i^i  n
)  =  (/) )  <->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  w
)  e.  n  /\  ( F `  z )  e.  m  /\  (
n  i^i  m )  =  (/) ) )
15 rexcom 3023 . . . . . . . . . . . 12  |-  ( E. m  e.  (KQ `  J ) E. n  e.  (KQ `  J ) ( ( F `  w )  e.  n  /\  ( F `  z
)  e.  m  /\  ( n  i^i  m
)  =  (/) )  <->  E. n  e.  (KQ `  J ) E. m  e.  (KQ
`  J ) ( ( F `  w
)  e.  n  /\  ( F `  z )  e.  m  /\  (
n  i^i  m )  =  (/) ) )
1614, 15bitri 249 . . . . . . . . . . 11  |-  ( E. m  e.  (KQ `  J ) E. n  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  ( F `  w
)  e.  n  /\  ( m  i^i  n
)  =  (/) )  <->  E. n  e.  (KQ `  J ) E. m  e.  (KQ
`  J ) ( ( F `  w
)  e.  n  /\  ( F `  z )  e.  m  /\  (
n  i^i  m )  =  (/) ) )
177, 16sylnib 304 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  -.  E. n  e.  (KQ `  J ) E. m  e.  (KQ
`  J ) ( ( F `  w
)  e.  n  /\  ( F `  z )  e.  m  /\  (
n  i^i  m )  =  (/) ) )
181, 2, 3, 5, 4, 6, 17regr1lem 19991 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  ( w  e.  a  ->  z  e.  a ) )
198, 18impbid 191 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  ( a  e.  J  /\  -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )  ->  ( z  e.  a  <->  w  e.  a
) )
2019expr 615 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  ( z  e.  X  /\  w  e.  X ) )  /\  a  e.  J )  ->  ( -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) )  ->  (
z  e.  a  <->  w  e.  a ) ) )
2120ralrimdva 2882 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  ( F `  w
)  e.  n  /\  ( m  i^i  n
)  =  (/) )  ->  A. a  e.  J  ( z  e.  a  <-> 
w  e.  a ) ) )
221kqfeq 19976 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  z  e.  X  /\  w  e.  X )  ->  (
( F `  z
)  =  ( F `
 w )  <->  A. y  e.  J  ( z  e.  y  <->  w  e.  y
) ) )
23 elequ2 1772 . . . . . . . . . . 11  |-  ( y  =  a  ->  (
z  e.  y  <->  z  e.  a ) )
24 elequ2 1772 . . . . . . . . . . 11  |-  ( y  =  a  ->  (
w  e.  y  <->  w  e.  a ) )
2523, 24bibi12d 321 . . . . . . . . . 10  |-  ( y  =  a  ->  (
( z  e.  y  <-> 
w  e.  y )  <-> 
( z  e.  a  <-> 
w  e.  a ) ) )
2625cbvralv 3088 . . . . . . . . 9  |-  ( A. y  e.  J  (
z  e.  y  <->  w  e.  y )  <->  A. a  e.  J  ( z  e.  a  <->  w  e.  a
) )
2722, 26syl6bb 261 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  z  e.  X  /\  w  e.  X )  ->  (
( F `  z
)  =  ( F `
 w )  <->  A. a  e.  J  ( z  e.  a  <->  w  e.  a
) ) )
28273expb 1197 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( ( F `  z )  =  ( F `  w )  <->  A. a  e.  J  ( z  e.  a  <->  w  e.  a
) ) )
2928adantlr 714 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( ( F `  z )  =  ( F `  w )  <->  A. a  e.  J  ( z  e.  a  <->  w  e.  a
) ) )
3021, 29sylibrd 234 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( -.  E. m  e.  (KQ `  J ) E. n  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  ( F `  w
)  e.  n  /\  ( m  i^i  n
)  =  (/) )  -> 
( F `  z
)  =  ( F `
 w ) ) )
3130necon1ad 2683 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  /\  (
z  e.  X  /\  w  e.  X )
)  ->  ( ( F `  z )  =/=  ( F `  w
)  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )
3231ralrimivva 2885 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  A. z  e.  X  A. w  e.  X  ( ( F `  z )  =/=  ( F `  w
)  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )
331kqffn 19977 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  F  Fn  X )
3433adantr 465 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  F  Fn  X )
35 neeq1 2748 . . . . . . . 8  |-  ( a  =  ( F `  z )  ->  (
a  =/=  b  <->  ( F `  z )  =/=  b
) )
36 eleq1 2539 . . . . . . . . . 10  |-  ( a  =  ( F `  z )  ->  (
a  e.  m  <->  ( F `  z )  e.  m
) )
37363anbi1d 1303 . . . . . . . . 9  |-  ( a  =  ( F `  z )  ->  (
( a  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) )  <->  ( ( F `  z )  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )
38372rexbidv 2980 . . . . . . . 8  |-  ( a  =  ( F `  z )  ->  ( E. m  e.  (KQ `  J ) E. n  e.  (KQ `  J ) ( a  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) )  <->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) )
3935, 38imbi12d 320 . . . . . . 7  |-  ( a  =  ( F `  z )  ->  (
( a  =/=  b  ->  E. m  e.  (KQ
`  J ) E. n  e.  (KQ `  J ) ( a  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) )  <->  ( ( F `  z )  =/=  b  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) )
4039ralbidv 2903 . . . . . 6  |-  ( a  =  ( F `  z )  ->  ( A. b  e.  ran  F ( a  =/=  b  ->  E. m  e.  (KQ
`  J ) E. n  e.  (KQ `  J ) ( a  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) )  <->  A. b  e.  ran  F ( ( F `  z )  =/=  b  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) )
4140ralrn 6023 . . . . 5  |-  ( F  Fn  X  ->  ( A. a  e.  ran  F A. b  e.  ran  F ( a  =/=  b  ->  E. m  e.  (KQ
`  J ) E. n  e.  (KQ `  J ) ( a  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) )  <->  A. z  e.  X  A. b  e.  ran  F ( ( F `  z )  =/=  b  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) )
42 neeq2 2750 . . . . . . . 8  |-  ( b  =  ( F `  w )  ->  (
( F `  z
)  =/=  b  <->  ( F `  z )  =/=  ( F `  w )
) )
43 eleq1 2539 . . . . . . . . . 10  |-  ( b  =  ( F `  w )  ->  (
b  e.  n  <->  ( F `  w )  e.  n
) )
44433anbi2d 1304 . . . . . . . . 9  |-  ( b  =  ( F `  w )  ->  (
( ( F `  z )  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) )  <->  ( ( F `  z )  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )
45442rexbidv 2980 . . . . . . . 8  |-  ( b  =  ( F `  w )  ->  ( E. m  e.  (KQ `  J ) E. n  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) )  <->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) )
4642, 45imbi12d 320 . . . . . . 7  |-  ( b  =  ( F `  w )  ->  (
( ( F `  z )  =/=  b  ->  E. m  e.  (KQ
`  J ) E. n  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) )  <->  ( ( F `  z )  =/=  ( F `  w
)  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) )
4746ralrn 6023 . . . . . 6  |-  ( F  Fn  X  ->  ( A. b  e.  ran  F ( ( F `  z )  =/=  b  ->  E. m  e.  (KQ
`  J ) E. n  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) )  <->  A. w  e.  X  ( ( F `  z )  =/=  ( F `  w
)  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) )
4847ralbidv 2903 . . . . 5  |-  ( F  Fn  X  ->  ( A. z  e.  X  A. b  e.  ran  F ( ( F `  z )  =/=  b  ->  E. m  e.  (KQ
`  J ) E. n  e.  (KQ `  J ) ( ( F `  z )  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) )  <->  A. z  e.  X  A. w  e.  X  ( ( F `  z )  =/=  ( F `  w
)  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) )
4941, 48bitrd 253 . . . 4  |-  ( F  Fn  X  ->  ( A. a  e.  ran  F A. b  e.  ran  F ( a  =/=  b  ->  E. m  e.  (KQ
`  J ) E. n  e.  (KQ `  J ) ( a  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) )  <->  A. z  e.  X  A. w  e.  X  ( ( F `  z )  =/=  ( F `  w
)  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) )
5034, 49syl 16 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  ( A. a  e.  ran  F A. b  e.  ran  F ( a  =/=  b  ->  E. m  e.  (KQ
`  J ) E. n  e.  (KQ `  J ) ( a  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) )  <->  A. z  e.  X  A. w  e.  X  ( ( F `  z )  =/=  ( F `  w
)  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( ( F `  z
)  e.  m  /\  ( F `  w )  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) )
5132, 50mpbird 232 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  A. a  e.  ran  F A. b  e.  ran  F ( a  =/=  b  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ
`  J ) ( a  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) )
521kqtopon 19979 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  (KQ `  J
)  e.  (TopOn `  ran  F ) )
5352adantr 465 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  (KQ `  J )  e.  (TopOn `  ran  F ) )
54 ishaus2 19634 . . 3  |-  ( (KQ
`  J )  e.  (TopOn `  ran  F )  ->  ( (KQ `  J )  e.  Haus  <->  A. a  e.  ran  F A. b  e.  ran  F ( a  =/=  b  ->  E. m  e.  (KQ `  J ) E. n  e.  (KQ `  J ) ( a  e.  m  /\  b  e.  n  /\  ( m  i^i  n
)  =  (/) ) ) ) )
5553, 54syl 16 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  (
(KQ `  J )  e.  Haus  <->  A. a  e.  ran  F A. b  e.  ran  F ( a  =/=  b  ->  E. m  e.  (KQ
`  J ) E. n  e.  (KQ `  J ) ( a  e.  m  /\  b  e.  n  /\  (
m  i^i  n )  =  (/) ) ) ) )
5651, 55mpbird 232 1  |-  ( ( J  e.  (TopOn `  X )  /\  J  e.  Reg )  ->  (KQ `  J )  e.  Haus )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   {crab 2818    i^i cin 3475   (/)c0 3785    |-> cmpt 4505   ran crn 5000    Fn wfn 5582   ` cfv 5587  TopOnctopon 19178   Hauscha 19591   Regcreg 19592  KQckq 19945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-qtop 14761  df-top 19182  df-topon 19185  df-cld 19302  df-cls 19304  df-haus 19598  df-reg 19599  df-kq 19946
This theorem is referenced by:  regr1  20002
  Copyright terms: Public domain W3C validator