Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapmeet Structured version   Visualization version   GIF version

Theorem pmapmeet 34077
 Description: The projective map of a meet. (Contributed by NM, 25-Jan-2012.)
Hypotheses
Ref Expression
pmapmeet.b 𝐵 = (Base‘𝐾)
pmapmeet.m = (meet‘𝐾)
pmapmeet.a 𝐴 = (Atoms‘𝐾)
pmapmeet.p 𝑃 = (pmap‘𝐾)
Assertion
Ref Expression
pmapmeet ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑃‘(𝑋 𝑌)) = ((𝑃𝑋) ∩ (𝑃𝑌)))

Proof of Theorem pmapmeet
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . 4 (glb‘𝐾) = (glb‘𝐾)
2 pmapmeet.m . . . 4 = (meet‘𝐾)
3 simp1 1054 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
4 simp2 1055 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
5 simp3 1056 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
61, 2, 3, 4, 5meetval 16842 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = ((glb‘𝐾)‘{𝑋, 𝑌}))
76fveq2d 6107 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑃‘(𝑋 𝑌)) = (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌})))
8 prssi 4293 . . . 4 ((𝑋𝐵𝑌𝐵) → {𝑋, 𝑌} ⊆ 𝐵)
983adant1 1072 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → {𝑋, 𝑌} ⊆ 𝐵)
10 prnzg 4254 . . . 4 (𝑋𝐵 → {𝑋, 𝑌} ≠ ∅)
11103ad2ant2 1076 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → {𝑋, 𝑌} ≠ ∅)
12 pmapmeet.b . . . 4 𝐵 = (Base‘𝐾)
13 pmapmeet.p . . . 4 𝑃 = (pmap‘𝐾)
1412, 1, 13pmapglb 34074 . . 3 ((𝐾 ∈ HL ∧ {𝑋, 𝑌} ⊆ 𝐵 ∧ {𝑋, 𝑌} ≠ ∅) → (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (𝑃𝑥))
153, 9, 11, 14syl3anc 1318 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑃‘((glb‘𝐾)‘{𝑋, 𝑌})) = 𝑥 ∈ {𝑋, 𝑌} (𝑃𝑥))
16 fveq2 6103 . . . 4 (𝑥 = 𝑋 → (𝑃𝑥) = (𝑃𝑋))
17 fveq2 6103 . . . 4 (𝑥 = 𝑌 → (𝑃𝑥) = (𝑃𝑌))
1816, 17iinxprg 4537 . . 3 ((𝑋𝐵𝑌𝐵) → 𝑥 ∈ {𝑋, 𝑌} (𝑃𝑥) = ((𝑃𝑋) ∩ (𝑃𝑌)))
19183adant1 1072 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑥 ∈ {𝑋, 𝑌} (𝑃𝑥) = ((𝑃𝑋) ∩ (𝑃𝑌)))
207, 15, 193eqtrd 2648 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑃‘(𝑋 𝑌)) = ((𝑃𝑋) ∩ (𝑃𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  {cpr 4127  ∩ ciin 4456  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  glbcglb 16766  meetcmee 16768  Atomscatm 33568  HLchlt 33655  pmapcpmap 33801 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-poset 16769  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-lat 16869  df-clat 16931  df-ats 33572  df-hlat 33656  df-pmap 33808 This theorem is referenced by:  hlmod1i  34160  poldmj1N  34232  pmapj2N  34233  pnonsingN  34237  psubclinN  34252  poml4N  34257  pl42lem1N  34283  pl42lem2N  34284
 Copyright terms: Public domain W3C validator