Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapglb | Structured version Visualization version GIF version |
Description: The projective map of the GLB of a set of lattice elements 𝑆. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.) |
Ref | Expression |
---|---|
pmapglb.b | ⊢ 𝐵 = (Base‘𝐾) |
pmapglb.g | ⊢ 𝐺 = (glb‘𝐾) |
pmapglb.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmapglb | ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2902 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝑆 𝑦 = 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥)) | |
2 | equcom 1932 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
3 | 2 | anbi2i 726 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ 𝑆 ∧ 𝑥 = 𝑦)) |
4 | ancom 465 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑥 = 𝑦) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆)) | |
5 | 3, 4 | bitri 263 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥) ↔ (𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆)) |
6 | 5 | exbii 1764 | . . . . . . . 8 ⊢ (∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆)) |
7 | vex 3176 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
8 | eleq1 2676 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑆 ↔ 𝑦 ∈ 𝑆)) | |
9 | 7, 8 | ceqsexv 3215 | . . . . . . . 8 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 ∈ 𝑆) ↔ 𝑦 ∈ 𝑆) |
10 | 6, 9 | bitri 263 | . . . . . . 7 ⊢ (∃𝑥(𝑥 ∈ 𝑆 ∧ 𝑦 = 𝑥) ↔ 𝑦 ∈ 𝑆) |
11 | 1, 10 | bitri 263 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝑆 𝑦 = 𝑥 ↔ 𝑦 ∈ 𝑆) |
12 | 11 | abbii 2726 | . . . . 5 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥} = {𝑦 ∣ 𝑦 ∈ 𝑆} |
13 | abid2 2732 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 ∈ 𝑆} = 𝑆 | |
14 | 12, 13 | eqtr2i 2633 | . . . 4 ⊢ 𝑆 = {𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥} |
15 | 14 | fveq2i 6106 | . . 3 ⊢ (𝐺‘𝑆) = (𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥}) |
16 | 15 | fveq2i 6106 | . 2 ⊢ (𝑀‘(𝐺‘𝑆)) = (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥})) |
17 | dfss3 3558 | . . 3 ⊢ (𝑆 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝑆 𝑥 ∈ 𝐵) | |
18 | pmapglb.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
19 | pmapglb.g | . . . 4 ⊢ 𝐺 = (glb‘𝐾) | |
20 | pmapglb.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
21 | 18, 19, 20 | pmapglbx 34073 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ∀𝑥 ∈ 𝑆 𝑥 ∈ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥})) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
22 | 17, 21 | syl3an2b 1355 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑥 ∈ 𝑆 𝑦 = 𝑥})) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
23 | 16, 22 | syl5eq 2656 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅) → (𝑀‘(𝐺‘𝑆)) = ∩ 𝑥 ∈ 𝑆 (𝑀‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∃wex 1695 ∈ wcel 1977 {cab 2596 ≠ wne 2780 ∀wral 2896 ∃wrex 2897 ⊆ wss 3540 ∅c0 3874 ∩ ciin 4456 ‘cfv 5804 Basecbs 15695 glbcglb 16766 HLchlt 33655 pmapcpmap 33801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-poset 16769 df-lub 16797 df-glb 16798 df-join 16799 df-meet 16800 df-lat 16869 df-clat 16931 df-ats 33572 df-hlat 33656 df-pmap 33808 |
This theorem is referenced by: pmapglb2N 34075 pmapmeet 34077 |
Copyright terms: Public domain | W3C validator |