Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglb Structured version   Unicode version

Theorem pmapglb 33304
Description: The projective map of the GLB of a set of lattice elements  S. Variant of Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
pmapglb.b  |-  B  =  ( Base `  K
)
pmapglb.g  |-  G  =  ( glb `  K
)
pmapglb.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmapglb  |-  ( ( K  e.  HL  /\  S  C_  B  /\  S  =/=  (/) )  ->  ( M `  ( G `  S ) )  = 
|^|_ x  e.  S  ( M `  x ) )
Distinct variable groups:    x, B    x, K    x, S
Allowed substitution hints:    G( x)    M( x)

Proof of Theorem pmapglb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-rex 2777 . . . . . . 7  |-  ( E. x  e.  S  y  =  x  <->  E. x
( x  e.  S  /\  y  =  x
) )
2 equcom 1848 . . . . . . . . . . 11  |-  ( y  =  x  <->  x  =  y )
32anbi2i 698 . . . . . . . . . 10  |-  ( ( x  e.  S  /\  y  =  x )  <->  ( x  e.  S  /\  x  =  y )
)
4 ancom 451 . . . . . . . . . 10  |-  ( ( x  e.  S  /\  x  =  y )  <->  ( x  =  y  /\  x  e.  S )
)
53, 4bitri 252 . . . . . . . . 9  |-  ( ( x  e.  S  /\  y  =  x )  <->  ( x  =  y  /\  x  e.  S )
)
65exbii 1712 . . . . . . . 8  |-  ( E. x ( x  e.  S  /\  y  =  x )  <->  E. x
( x  =  y  /\  x  e.  S
) )
7 vex 3083 . . . . . . . . 9  |-  y  e. 
_V
8 eleq1 2495 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  S  <->  y  e.  S ) )
97, 8ceqsexv 3118 . . . . . . . 8  |-  ( E. x ( x  =  y  /\  x  e.  S )  <->  y  e.  S )
106, 9bitri 252 . . . . . . 7  |-  ( E. x ( x  e.  S  /\  y  =  x )  <->  y  e.  S )
111, 10bitri 252 . . . . . 6  |-  ( E. x  e.  S  y  =  x  <->  y  e.  S )
1211abbii 2551 . . . . 5  |-  { y  |  E. x  e.  S  y  =  x }  =  { y  |  y  e.  S }
13 abid2 2558 . . . . 5  |-  { y  |  y  e.  S }  =  S
1412, 13eqtr2i 2452 . . . 4  |-  S  =  { y  |  E. x  e.  S  y  =  x }
1514fveq2i 5884 . . 3  |-  ( G `
 S )  =  ( G `  {
y  |  E. x  e.  S  y  =  x } )
1615fveq2i 5884 . 2  |-  ( M `
 ( G `  S ) )  =  ( M `  ( G `  { y  |  E. x  e.  S  y  =  x }
) )
17 dfss3 3454 . . 3  |-  ( S 
C_  B  <->  A. x  e.  S  x  e.  B )
18 pmapglb.b . . . 4  |-  B  =  ( Base `  K
)
19 pmapglb.g . . . 4  |-  G  =  ( glb `  K
)
20 pmapglb.m . . . 4  |-  M  =  ( pmap `  K
)
2118, 19, 20pmapglbx 33303 . . 3  |-  ( ( K  e.  HL  /\  A. x  e.  S  x  e.  B  /\  S  =/=  (/) )  ->  ( M `  ( G `  { y  |  E. x  e.  S  y  =  x } ) )  =  |^|_ x  e.  S  ( M `  x ) )
2217, 21syl3an2b 1301 . 2  |-  ( ( K  e.  HL  /\  S  C_  B  /\  S  =/=  (/) )  ->  ( M `  ( G `  { y  |  E. x  e.  S  y  =  x } ) )  =  |^|_ x  e.  S  ( M `  x ) )
2316, 22syl5eq 2475 1  |-  ( ( K  e.  HL  /\  S  C_  B  /\  S  =/=  (/) )  ->  ( M `  ( G `  S ) )  = 
|^|_ x  e.  S  ( M `  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437   E.wex 1657    e. wcel 1872   {cab 2407    =/= wne 2614   A.wral 2771   E.wrex 2772    C_ wss 3436   (/)c0 3761   |^|_ciin 4300   ` cfv 5601   Basecbs 15120   glbcglb 16187   HLchlt 32885   pmapcpmap 33031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-poset 16190  df-lub 16219  df-glb 16220  df-join 16221  df-meet 16222  df-lat 16291  df-clat 16353  df-ats 32802  df-hlat 32886  df-pmap 33038
This theorem is referenced by:  pmapglb2N  33305  pmapmeet  33307
  Copyright terms: Public domain W3C validator