Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  plttr Structured version   Visualization version   GIF version

Theorem plttr 16793
 Description: The less-than relation is transitive. (psstr 3673 analog.) (Contributed by NM, 2-Dec-2011.)
Hypotheses
Ref Expression
pltnlt.b 𝐵 = (Base‘𝐾)
pltnlt.s < = (lt‘𝐾)
Assertion
Ref Expression
plttr ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))

Proof of Theorem plttr
StepHypRef Expression
1 eqid 2610 . . . . . 6 (le‘𝐾) = (le‘𝐾)
2 pltnlt.s . . . . . 6 < = (lt‘𝐾)
31, 2pltle 16784 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌𝑋(le‘𝐾)𝑌))
433adant3r3 1268 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 < 𝑌𝑋(le‘𝐾)𝑌))
51, 2pltle 16784 . . . . 5 ((𝐾 ∈ Poset ∧ 𝑌𝐵𝑍𝐵) → (𝑌 < 𝑍𝑌(le‘𝐾)𝑍))
653adant3r1 1266 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 < 𝑍𝑌(le‘𝐾)𝑍))
7 pltnlt.b . . . . 5 𝐵 = (Base‘𝐾)
87, 1postr 16776 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(le‘𝐾)𝑌𝑌(le‘𝐾)𝑍) → 𝑋(le‘𝐾)𝑍))
94, 6, 8syl2and 499 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋(le‘𝐾)𝑍))
107, 2pltn2lp 16792 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → ¬ (𝑋 < 𝑌𝑌 < 𝑋))
11103adant3r3 1268 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ¬ (𝑋 < 𝑌𝑌 < 𝑋))
12 breq2 4587 . . . . . . 7 (𝑋 = 𝑍 → (𝑌 < 𝑋𝑌 < 𝑍))
1312anbi2d 736 . . . . . 6 (𝑋 = 𝑍 → ((𝑋 < 𝑌𝑌 < 𝑋) ↔ (𝑋 < 𝑌𝑌 < 𝑍)))
1413notbid 307 . . . . 5 (𝑋 = 𝑍 → (¬ (𝑋 < 𝑌𝑌 < 𝑋) ↔ ¬ (𝑋 < 𝑌𝑌 < 𝑍)))
1511, 14syl5ibcom 234 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 = 𝑍 → ¬ (𝑋 < 𝑌𝑌 < 𝑍)))
1615necon2ad 2797 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋𝑍))
179, 16jcad 554 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → (𝑋(le‘𝐾)𝑍𝑋𝑍)))
181, 2pltval 16783 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑍𝐵) → (𝑋 < 𝑍 ↔ (𝑋(le‘𝐾)𝑍𝑋𝑍)))
19183adant3r2 1267 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 < 𝑍 ↔ (𝑋(le‘𝐾)𝑍𝑋𝑍)))
2017, 19sylibrd 248 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑌𝑌 < 𝑍) → 𝑋 < 𝑍))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   class class class wbr 4583  ‘cfv 5804  Basecbs 15695  lecple 15775  Posetcpo 16763  ltcplt 16764 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-preset 16751  df-poset 16769  df-plt 16781 This theorem is referenced by:  pltletr  16794  plelttr  16795  pospo  16796  archiabllem2c  29080  ofldchr  29145  hlhgt2  33693  hl0lt1N  33694  lhp0lt  34307
 Copyright terms: Public domain W3C validator