MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plttr Structured version   Unicode version

Theorem plttr 15152
Description: The less-than relation is transitive. (psstr 3472 analog.) (Contributed by NM, 2-Dec-2011.)
Hypotheses
Ref Expression
pltnlt.b  |-  B  =  ( Base `  K
)
pltnlt.s  |-  .<  =  ( lt `  K )
Assertion
Ref Expression
plttr  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<  Y  /\  Y  .<  Z )  ->  X  .<  Z ) )

Proof of Theorem plttr
StepHypRef Expression
1 eqid 2443 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
2 pltnlt.s . . . . . 6  |-  .<  =  ( lt `  K )
31, 2pltle 15143 . . . . 5  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  X
( le `  K
) Y ) )
433adant3r3 1198 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .<  Y  ->  X ( le `  K ) Y ) )
51, 2pltle 15143 . . . . 5  |-  ( ( K  e.  Poset  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .<  Z  ->  Y
( le `  K
) Z ) )
653adant3r1 1196 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( Y  .<  Z  ->  Y ( le `  K ) Z ) )
7 pltnlt.b . . . . 5  |-  B  =  ( Base `  K
)
87, 1postr 15135 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X ( le `  K ) Y  /\  Y ( le `  K ) Z )  ->  X ( le
`  K ) Z ) )
94, 6, 8syl2and 483 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<  Y  /\  Y  .<  Z )  ->  X
( le `  K
) Z ) )
107, 2pltn2lp 15151 . . . . . 6  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  -.  ( X  .<  Y  /\  Y  .<  X ) )
11103adant3r3 1198 . . . . 5  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  -.  ( X  .<  Y  /\  Y  .<  X ) )
12 breq2 4308 . . . . . . 7  |-  ( X  =  Z  ->  ( Y  .<  X  <->  Y  .<  Z ) )
1312anbi2d 703 . . . . . 6  |-  ( X  =  Z  ->  (
( X  .<  Y  /\  Y  .<  X )  <->  ( X  .<  Y  /\  Y  .<  Z ) ) )
1413notbid 294 . . . . 5  |-  ( X  =  Z  ->  ( -.  ( X  .<  Y  /\  Y  .<  X )  <->  -.  ( X  .<  Y  /\  Y  .<  Z ) ) )
1511, 14syl5ibcom 220 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  =  Z  ->  -.  ( X  .<  Y  /\  Y  .<  Z ) ) )
1615necon2ad 2671 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<  Y  /\  Y  .<  Z )  ->  X  =/=  Z ) )
179, 16jcad 533 . 2  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<  Y  /\  Y  .<  Z )  ->  ( X ( le `  K ) Z  /\  X  =/=  Z ) ) )
181, 2pltval 15142 . . 3  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .<  Z  <->  ( X
( le `  K
) Z  /\  X  =/=  Z ) ) )
19183adant3r2 1197 . 2  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .<  Z  <->  ( X ( le `  K ) Z  /\  X  =/= 
Z ) ) )
2017, 19sylibrd 234 1  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<  Y  /\  Y  .<  Z )  ->  X  .<  Z ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2618   class class class wbr 4304   ` cfv 5430   Basecbs 14186   lecple 14257   Posetcpo 15122   ltcplt 15123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pr 4543
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-rab 2736  df-v 2986  df-sbc 3199  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-nul 3650  df-if 3804  df-sn 3890  df-pr 3892  df-op 3896  df-uni 4104  df-br 4305  df-opab 4363  df-mpt 4364  df-id 4648  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-iota 5393  df-fun 5432  df-fv 5438  df-poset 15128  df-plt 15140
This theorem is referenced by:  pltletr  15153  plelttr  15154  pospo  15155  archiabllem2c  26224  ofldchr  26294  hlhgt2  33045  hl0lt1N  33046  lhp0lt  33659
  Copyright terms: Public domain W3C validator