MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plttr Structured version   Unicode version

Theorem plttr 16160
Description: The less-than relation is transitive. (psstr 3566 analog.) (Contributed by NM, 2-Dec-2011.)
Hypotheses
Ref Expression
pltnlt.b  |-  B  =  ( Base `  K
)
pltnlt.s  |-  .<  =  ( lt `  K )
Assertion
Ref Expression
plttr  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<  Y  /\  Y  .<  Z )  ->  X  .<  Z ) )

Proof of Theorem plttr
StepHypRef Expression
1 eqid 2420 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
2 pltnlt.s . . . . . 6  |-  .<  =  ( lt `  K )
31, 2pltle 16151 . . . . 5  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  ->  X
( le `  K
) Y ) )
433adant3r3 1216 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .<  Y  ->  X ( le `  K ) Y ) )
51, 2pltle 16151 . . . . 5  |-  ( ( K  e.  Poset  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .<  Z  ->  Y
( le `  K
) Z ) )
653adant3r1 1214 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( Y  .<  Z  ->  Y ( le `  K ) Z ) )
7 pltnlt.b . . . . 5  |-  B  =  ( Base `  K
)
87, 1postr 16143 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X ( le `  K ) Y  /\  Y ( le `  K ) Z )  ->  X ( le
`  K ) Z ) )
94, 6, 8syl2and 485 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<  Y  /\  Y  .<  Z )  ->  X
( le `  K
) Z ) )
107, 2pltn2lp 16159 . . . . . 6  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  -.  ( X  .<  Y  /\  Y  .<  X ) )
11103adant3r3 1216 . . . . 5  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  -.  ( X  .<  Y  /\  Y  .<  X ) )
12 breq2 4421 . . . . . . 7  |-  ( X  =  Z  ->  ( Y  .<  X  <->  Y  .<  Z ) )
1312anbi2d 708 . . . . . 6  |-  ( X  =  Z  ->  (
( X  .<  Y  /\  Y  .<  X )  <->  ( X  .<  Y  /\  Y  .<  Z ) ) )
1413notbid 295 . . . . 5  |-  ( X  =  Z  ->  ( -.  ( X  .<  Y  /\  Y  .<  X )  <->  -.  ( X  .<  Y  /\  Y  .<  Z ) ) )
1511, 14syl5ibcom 223 . . . 4  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  =  Z  ->  -.  ( X  .<  Y  /\  Y  .<  Z ) ) )
1615necon2ad 2635 . . 3  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<  Y  /\  Y  .<  Z )  ->  X  =/=  Z ) )
179, 16jcad 535 . 2  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<  Y  /\  Y  .<  Z )  ->  ( X ( le `  K ) Z  /\  X  =/=  Z ) ) )
181, 2pltval 16150 . . 3  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .<  Z  <->  ( X
( le `  K
) Z  /\  X  =/=  Z ) ) )
19183adant3r2 1215 . 2  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .<  Z  <->  ( X ( le `  K ) Z  /\  X  =/= 
Z ) ) )
2017, 19sylibrd 237 1  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .<  Y  /\  Y  .<  Z )  ->  X  .<  Z ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1867    =/= wne 2616   class class class wbr 4417   ` cfv 5592   Basecbs 15073   lecple 15149   Posetcpo 16129   ltcplt 16130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pr 4652
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-rab 2782  df-v 3080  df-sbc 3297  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-iota 5556  df-fun 5594  df-fv 5600  df-preset 16117  df-poset 16135  df-plt 16148
This theorem is referenced by:  pltletr  16161  plelttr  16162  pospo  16163  archiabllem2c  28347  ofldchr  28413  hlhgt2  32663  hl0lt1N  32664  lhp0lt  33277
  Copyright terms: Public domain W3C validator