Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclvalN Structured version   Visualization version   GIF version

Theorem pclvalN 34194
Description: Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfval.a 𝐴 = (Atoms‘𝐾)
pclfval.s 𝑆 = (PSubSp‘𝐾)
pclfval.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclvalN ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐾   𝑦,𝑆   𝑦,𝑋
Allowed substitution hints:   𝑈(𝑦)   𝑉(𝑦)

Proof of Theorem pclvalN
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pclfval.a . . . 4 𝐴 = (Atoms‘𝐾)
2 fvex 6113 . . . 4 (Atoms‘𝐾) ∈ V
31, 2eqeltri 2684 . . 3 𝐴 ∈ V
43elpw2 4755 . 2 (𝑋 ∈ 𝒫 𝐴𝑋𝐴)
5 pclfval.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
6 pclfval.c . . . . . 6 𝑈 = (PCl‘𝐾)
71, 5, 6pclfvalN 34193 . . . . 5 (𝐾𝑉𝑈 = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}))
87fveq1d 6105 . . . 4 (𝐾𝑉 → (𝑈𝑋) = ((𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})‘𝑋))
98adantr 480 . . 3 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → (𝑈𝑋) = ((𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})‘𝑋))
10 simpr 476 . . . 4 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝑋 ∈ 𝒫 𝐴)
11 elpwi 4117 . . . . . . . 8 (𝑋 ∈ 𝒫 𝐴𝑋𝐴)
1211adantl 481 . . . . . . 7 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝑋𝐴)
131, 5atpsubN 34057 . . . . . . . . 9 (𝐾𝑉𝐴𝑆)
1413adantr 480 . . . . . . . 8 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝐴𝑆)
15 sseq2 3590 . . . . . . . . 9 (𝑦 = 𝐴 → (𝑋𝑦𝑋𝐴))
1615elrab3 3332 . . . . . . . 8 (𝐴𝑆 → (𝐴 ∈ {𝑦𝑆𝑋𝑦} ↔ 𝑋𝐴))
1714, 16syl 17 . . . . . . 7 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → (𝐴 ∈ {𝑦𝑆𝑋𝑦} ↔ 𝑋𝐴))
1812, 17mpbird 246 . . . . . 6 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → 𝐴 ∈ {𝑦𝑆𝑋𝑦})
19 ne0i 3880 . . . . . 6 (𝐴 ∈ {𝑦𝑆𝑋𝑦} → {𝑦𝑆𝑋𝑦} ≠ ∅)
2018, 19syl 17 . . . . 5 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → {𝑦𝑆𝑋𝑦} ≠ ∅)
21 intex 4747 . . . . 5 ({𝑦𝑆𝑋𝑦} ≠ ∅ ↔ {𝑦𝑆𝑋𝑦} ∈ V)
2220, 21sylib 207 . . . 4 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → {𝑦𝑆𝑋𝑦} ∈ V)
23 sseq1 3589 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝑦𝑋𝑦))
2423rabbidv 3164 . . . . . 6 (𝑥 = 𝑋 → {𝑦𝑆𝑥𝑦} = {𝑦𝑆𝑋𝑦})
2524inteqd 4415 . . . . 5 (𝑥 = 𝑋 {𝑦𝑆𝑥𝑦} = {𝑦𝑆𝑋𝑦})
26 eqid 2610 . . . . 5 (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}) = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})
2725, 26fvmptg 6189 . . . 4 ((𝑋 ∈ 𝒫 𝐴 {𝑦𝑆𝑋𝑦} ∈ V) → ((𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})‘𝑋) = {𝑦𝑆𝑋𝑦})
2810, 22, 27syl2anc 691 . . 3 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → ((𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦})‘𝑋) = {𝑦𝑆𝑋𝑦})
299, 28eqtrd 2644 . 2 ((𝐾𝑉𝑋 ∈ 𝒫 𝐴) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
304, 29sylan2br 492 1 ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  {crab 2900  Vcvv 3173  wss 3540  c0 3874  𝒫 cpw 4108   cint 4410  cmpt 4643  cfv 5804  Atomscatm 33568  PSubSpcpsubsp 33800  PClcpclN 34191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-psubsp 33807  df-pclN 34192
This theorem is referenced by:  pclclN  34195  elpclN  34196  elpcliN  34197  pclssN  34198  pclssidN  34199  pclidN  34200
  Copyright terms: Public domain W3C validator