Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpcliN | Structured version Visualization version GIF version |
Description: Implication of membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elpcli.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
elpcli.c | ⊢ 𝑈 = (PCl‘𝐾) |
Ref | Expression |
---|---|
elpcliN | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) ∧ 𝑄 ∈ (𝑈‘𝑋)) → 𝑄 ∈ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1054 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → 𝐾 ∈ 𝑉) | |
2 | simp2 1055 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → 𝑋 ⊆ 𝑌) | |
3 | eqid 2610 | . . . . . . . . 9 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
4 | elpcli.s | . . . . . . . . 9 ⊢ 𝑆 = (PSubSp‘𝐾) | |
5 | 3, 4 | psubssat 34058 | . . . . . . . 8 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑌 ∈ 𝑆) → 𝑌 ⊆ (Atoms‘𝐾)) |
6 | 5 | 3adant2 1073 | . . . . . . 7 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → 𝑌 ⊆ (Atoms‘𝐾)) |
7 | 2, 6 | sstrd 3578 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → 𝑋 ⊆ (Atoms‘𝐾)) |
8 | elpcli.c | . . . . . . 7 ⊢ 𝑈 = (PCl‘𝐾) | |
9 | 3, 4, 8 | pclvalN 34194 | . . . . . 6 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ (Atoms‘𝐾)) → (𝑈‘𝑋) = ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧}) |
10 | 1, 7, 9 | syl2anc 691 | . . . . 5 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (𝑈‘𝑋) = ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧}) |
11 | 10 | eleq2d 2673 | . . . 4 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (𝑄 ∈ (𝑈‘𝑋) ↔ 𝑄 ∈ ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧})) |
12 | elintrabg 4424 | . . . . 5 ⊢ (𝑄 ∈ ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧} → (𝑄 ∈ ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧} ↔ ∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧))) | |
13 | 12 | ibi 255 | . . . 4 ⊢ (𝑄 ∈ ∩ {𝑧 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑧} → ∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧)) |
14 | 11, 13 | syl6bi 242 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (𝑄 ∈ (𝑈‘𝑋) → ∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧))) |
15 | sseq2 3590 | . . . . . . . 8 ⊢ (𝑧 = 𝑌 → (𝑋 ⊆ 𝑧 ↔ 𝑋 ⊆ 𝑌)) | |
16 | eleq2 2677 | . . . . . . . 8 ⊢ (𝑧 = 𝑌 → (𝑄 ∈ 𝑧 ↔ 𝑄 ∈ 𝑌)) | |
17 | 15, 16 | imbi12d 333 | . . . . . . 7 ⊢ (𝑧 = 𝑌 → ((𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) ↔ (𝑋 ⊆ 𝑌 → 𝑄 ∈ 𝑌))) |
18 | 17 | rspccv 3279 | . . . . . 6 ⊢ (∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) → (𝑌 ∈ 𝑆 → (𝑋 ⊆ 𝑌 → 𝑄 ∈ 𝑌))) |
19 | 18 | com13 86 | . . . . 5 ⊢ (𝑋 ⊆ 𝑌 → (𝑌 ∈ 𝑆 → (∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) → 𝑄 ∈ 𝑌))) |
20 | 19 | imp 444 | . . . 4 ⊢ ((𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) → 𝑄 ∈ 𝑌)) |
21 | 20 | 3adant1 1072 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (∀𝑧 ∈ 𝑆 (𝑋 ⊆ 𝑧 → 𝑄 ∈ 𝑧) → 𝑄 ∈ 𝑌)) |
22 | 14, 21 | syld 46 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) → (𝑄 ∈ (𝑈‘𝑋) → 𝑄 ∈ 𝑌)) |
23 | 22 | imp 444 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) ∧ 𝑄 ∈ (𝑈‘𝑋)) → 𝑄 ∈ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∀wral 2896 {crab 2900 ⊆ wss 3540 ∩ cint 4410 ‘cfv 5804 Atomscatm 33568 PSubSpcpsubsp 33800 PClcpclN 34191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-psubsp 33807 df-pclN 34192 |
This theorem is referenced by: pclfinclN 34254 |
Copyright terms: Public domain | W3C validator |