Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclvalN Structured version   Unicode version

Theorem pclvalN 33843
Description: Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfval.a  |-  A  =  ( Atoms `  K )
pclfval.s  |-  S  =  ( PSubSp `  K )
pclfval.c  |-  U  =  ( PCl `  K
)
Assertion
Ref Expression
pclvalN  |-  ( ( K  e.  V  /\  X  C_  A )  -> 
( U `  X
)  =  |^| { y  e.  S  |  X  C_  y } )
Distinct variable groups:    y, A    y, K    y, S    y, X
Allowed substitution hints:    U( y)    V( y)

Proof of Theorem pclvalN
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pclfval.a . . . 4  |-  A  =  ( Atoms `  K )
2 fvex 5802 . . . 4  |-  ( Atoms `  K )  e.  _V
31, 2eqeltri 2535 . . 3  |-  A  e. 
_V
43elpw2 4557 . 2  |-  ( X  e.  ~P A  <->  X  C_  A
)
5 pclfval.s . . . . . 6  |-  S  =  ( PSubSp `  K )
6 pclfval.c . . . . . 6  |-  U  =  ( PCl `  K
)
71, 5, 6pclfvalN 33842 . . . . 5  |-  ( K  e.  V  ->  U  =  ( x  e. 
~P A  |->  |^| { y  e.  S  |  x 
C_  y } ) )
87fveq1d 5794 . . . 4  |-  ( K  e.  V  ->  ( U `  X )  =  ( ( x  e.  ~P A  |->  |^|
{ y  e.  S  |  x  C_  y } ) `  X ) )
98adantr 465 . . 3  |-  ( ( K  e.  V  /\  X  e.  ~P A
)  ->  ( U `  X )  =  ( ( x  e.  ~P A  |->  |^| { y  e.  S  |  x  C_  y } ) `  X
) )
10 simpr 461 . . . 4  |-  ( ( K  e.  V  /\  X  e.  ~P A
)  ->  X  e.  ~P A )
11 elpwi 3970 . . . . . . . 8  |-  ( X  e.  ~P A  ->  X  C_  A )
1211adantl 466 . . . . . . 7  |-  ( ( K  e.  V  /\  X  e.  ~P A
)  ->  X  C_  A
)
131, 5atpsubN 33706 . . . . . . . . 9  |-  ( K  e.  V  ->  A  e.  S )
1413adantr 465 . . . . . . . 8  |-  ( ( K  e.  V  /\  X  e.  ~P A
)  ->  A  e.  S )
15 sseq2 3479 . . . . . . . . 9  |-  ( y  =  A  ->  ( X  C_  y  <->  X  C_  A
) )
1615elrab3 3218 . . . . . . . 8  |-  ( A  e.  S  ->  ( A  e.  { y  e.  S  |  X  C_  y }  <->  X  C_  A
) )
1714, 16syl 16 . . . . . . 7  |-  ( ( K  e.  V  /\  X  e.  ~P A
)  ->  ( A  e.  { y  e.  S  |  X  C_  y }  <-> 
X  C_  A )
)
1812, 17mpbird 232 . . . . . 6  |-  ( ( K  e.  V  /\  X  e.  ~P A
)  ->  A  e.  { y  e.  S  |  X  C_  y } )
19 ne0i 3744 . . . . . 6  |-  ( A  e.  { y  e.  S  |  X  C_  y }  ->  { y  e.  S  |  X  C_  y }  =/=  (/) )
2018, 19syl 16 . . . . 5  |-  ( ( K  e.  V  /\  X  e.  ~P A
)  ->  { y  e.  S  |  X  C_  y }  =/=  (/) )
21 intex 4549 . . . . 5  |-  ( { y  e.  S  |  X  C_  y }  =/=  (/)  <->  |^|
{ y  e.  S  |  X  C_  y }  e.  _V )
2220, 21sylib 196 . . . 4  |-  ( ( K  e.  V  /\  X  e.  ~P A
)  ->  |^| { y  e.  S  |  X  C_  y }  e.  _V )
23 sseq1 3478 . . . . . . 7  |-  ( x  =  X  ->  (
x  C_  y  <->  X  C_  y
) )
2423rabbidv 3063 . . . . . 6  |-  ( x  =  X  ->  { y  e.  S  |  x 
C_  y }  =  { y  e.  S  |  X  C_  y } )
2524inteqd 4234 . . . . 5  |-  ( x  =  X  ->  |^| { y  e.  S  |  x 
C_  y }  =  |^| { y  e.  S  |  X  C_  y } )
26 eqid 2451 . . . . 5  |-  ( x  e.  ~P A  |->  |^|
{ y  e.  S  |  x  C_  y } )  =  ( x  e.  ~P A  |->  |^|
{ y  e.  S  |  x  C_  y } )
2725, 26fvmptg 5874 . . . 4  |-  ( ( X  e.  ~P A  /\  |^| { y  e.  S  |  X  C_  y }  e.  _V )  ->  ( ( x  e.  ~P A  |->  |^|
{ y  e.  S  |  x  C_  y } ) `  X )  =  |^| { y  e.  S  |  X  C_  y } )
2810, 22, 27syl2anc 661 . . 3  |-  ( ( K  e.  V  /\  X  e.  ~P A
)  ->  ( (
x  e.  ~P A  |-> 
|^| { y  e.  S  |  x  C_  y } ) `  X )  =  |^| { y  e.  S  |  X  C_  y } )
299, 28eqtrd 2492 . 2  |-  ( ( K  e.  V  /\  X  e.  ~P A
)  ->  ( U `  X )  =  |^| { y  e.  S  |  X  C_  y } )
304, 29sylan2br 476 1  |-  ( ( K  e.  V  /\  X  C_  A )  -> 
( U `  X
)  =  |^| { y  e.  S  |  X  C_  y } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2644   {crab 2799   _Vcvv 3071    C_ wss 3429   (/)c0 3738   ~Pcpw 3961   |^|cint 4229    |-> cmpt 4451   ` cfv 5519   Atomscatm 33217   PSubSpcpsubsp 33449   PClcpclN 33840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-ov 6196  df-psubsp 33456  df-pclN 33841
This theorem is referenced by:  pclclN  33844  elpclN  33845  elpcliN  33846  pclssN  33847  pclssidN  33848  pclidN  33849
  Copyright terms: Public domain W3C validator