Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordnbtwn | Structured version Visualization version GIF version |
Description: There is no set between an ordinal class and its successor. Generalized Proposition 7.25 of [TakeutiZaring] p. 41. (Contributed by NM, 21-Jun-1998.) (Proof shortened by JJ, 24-Sep-2021.) |
Ref | Expression |
---|---|
ordnbtwn | ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordirr 5658 | . . 3 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
2 | ordn2lp 5660 | . . . 4 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | |
3 | pm2.24 120 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → (¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐴)) | |
4 | eleq2 2677 | . . . . . . 7 ⊢ (𝐵 = 𝐴 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐴)) | |
5 | 4 | biimpac 502 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 = 𝐴) → 𝐴 ∈ 𝐴) |
6 | 5 | a1d 25 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 = 𝐴) → (¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐴)) |
7 | 3, 6 | jaodan 822 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) → (¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ 𝐴)) |
8 | 2, 7 | syl5com 31 | . . 3 ⊢ (Ord 𝐴 → ((𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) → 𝐴 ∈ 𝐴)) |
9 | 1, 8 | mtod 188 | . 2 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) |
10 | elsuci 5708 | . . 3 ⊢ (𝐵 ∈ suc 𝐴 → (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴)) | |
11 | 10 | anim2i 591 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴) → (𝐴 ∈ 𝐵 ∧ (𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴))) |
12 | 9, 11 | nsyl 134 | 1 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Ord word 5639 suc csuc 5642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-tr 4681 df-eprel 4949 df-fr 4997 df-we 4999 df-ord 5643 df-suc 5646 |
This theorem is referenced by: onnbtwn 5735 ordsucss 6910 |
Copyright terms: Public domain | W3C validator |