MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordnbtwnOLD Structured version   Visualization version   GIF version

Theorem ordnbtwnOLD 5734
Description: Obsolete proof of ordnbtwn 5733 as of 24-Sep-2021. (Contributed by NM, 21-Jun-1998.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ordnbtwnOLD (Ord 𝐴 → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))

Proof of Theorem ordnbtwnOLD
StepHypRef Expression
1 ordn2lp 5660 . . 3 (Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))
2 ordirr 5658 . . 3 (Ord 𝐴 → ¬ 𝐴𝐴)
3 ioran 510 . . 3 (¬ ((𝐴𝐵𝐵𝐴) ∨ 𝐴𝐴) ↔ (¬ (𝐴𝐵𝐵𝐴) ∧ ¬ 𝐴𝐴))
41, 2, 3sylanbrc 695 . 2 (Ord 𝐴 → ¬ ((𝐴𝐵𝐵𝐴) ∨ 𝐴𝐴))
5 elsuci 5708 . . . . 5 (𝐵 ∈ suc 𝐴 → (𝐵𝐴𝐵 = 𝐴))
65anim2i 591 . . . 4 ((𝐴𝐵𝐵 ∈ suc 𝐴) → (𝐴𝐵 ∧ (𝐵𝐴𝐵 = 𝐴)))
7 andi 907 . . . 4 ((𝐴𝐵 ∧ (𝐵𝐴𝐵 = 𝐴)) ↔ ((𝐴𝐵𝐵𝐴) ∨ (𝐴𝐵𝐵 = 𝐴)))
86, 7sylib 207 . . 3 ((𝐴𝐵𝐵 ∈ suc 𝐴) → ((𝐴𝐵𝐵𝐴) ∨ (𝐴𝐵𝐵 = 𝐴)))
9 eleq2 2677 . . . . 5 (𝐵 = 𝐴 → (𝐴𝐵𝐴𝐴))
109biimpac 502 . . . 4 ((𝐴𝐵𝐵 = 𝐴) → 𝐴𝐴)
1110orim2i 539 . . 3 (((𝐴𝐵𝐵𝐴) ∨ (𝐴𝐵𝐵 = 𝐴)) → ((𝐴𝐵𝐵𝐴) ∨ 𝐴𝐴))
128, 11syl 17 . 2 ((𝐴𝐵𝐵 ∈ suc 𝐴) → ((𝐴𝐵𝐵𝐴) ∨ 𝐴𝐴))
134, 12nsyl 134 1 (Ord 𝐴 → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  Ord word 5639  suc csuc 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-fr 4997  df-we 4999  df-ord 5643  df-suc 5646
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator