Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordelsuc | Structured version Visualization version GIF version |
Description: A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.) |
Ref | Expression |
---|---|
ordelsuc | ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsucss 6910 | . . 3 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵)) |
3 | sucssel 5736 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) | |
4 | 3 | adantr 480 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (suc 𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝐵)) |
5 | 2, 4 | impbid 201 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∈ wcel 1977 ⊆ wss 3540 Ord word 5639 suc csuc 5642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-tr 4681 df-eprel 4949 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-ord 5643 df-on 5644 df-suc 5646 |
This theorem is referenced by: onsucmin 6913 onsucssi 6933 tfindsg2 6953 ordgt0ge1 7464 onomeneq 8035 cantnflem1 8469 r1ordg 8524 r1val1 8532 rankonidlem 8574 rankxplim3 8627 |
Copyright terms: Public domain | W3C validator |