MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelsuc Structured version   Visualization version   Unicode version

Theorem ordelsuc 6673
Description: A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.)
Assertion
Ref Expression
ordelsuc  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( A  e.  B  <->  suc  A  C_  B ) )

Proof of Theorem ordelsuc
StepHypRef Expression
1 ordsucss 6671 . . 3  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
21adantl 472 . 2  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( A  e.  B  ->  suc 
A  C_  B )
)
3 sucssel 5533 . . 3  |-  ( A  e.  C  ->  ( suc  A  C_  B  ->  A  e.  B ) )
43adantr 471 . 2  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( suc  A  C_  B  ->  A  e.  B ) )
52, 4impbid 195 1  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( A  e.  B  <->  suc  A  C_  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    e. wcel 1897    C_ wss 3415   Ord word 5440   suc csuc 5443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-sep 4538  ax-nul 4547  ax-pr 4652  ax-un 6609
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-ral 2753  df-rex 2754  df-rab 2757  df-v 3058  df-sbc 3279  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-pss 3431  df-nul 3743  df-if 3893  df-sn 3980  df-pr 3982  df-tp 3984  df-op 3986  df-uni 4212  df-br 4416  df-opab 4475  df-tr 4511  df-eprel 4763  df-po 4773  df-so 4774  df-fr 4811  df-we 4813  df-ord 5444  df-on 5445  df-suc 5447
This theorem is referenced by:  onsucmin  6674  onsucssi  6694  tfindsg2  6714  ordgt0ge1  7224  onomeneq  7787  cantnflem1  8219  r1ordg  8274  r1val1  8282  rankonidlem  8324  rankxplim3  8377
  Copyright terms: Public domain W3C validator