Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabexd Structured version   Visualization version   GIF version

Theorem oprabexd 7046
 Description: Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
oprabexd.1 (𝜑𝐴 ∈ V)
oprabexd.2 (𝜑𝐵 ∈ V)
oprabexd.3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → ∃*𝑧𝜓)
oprabexd.4 (𝜑𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
Assertion
Ref Expression
oprabexd (𝜑𝐹 ∈ V)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem oprabexd
StepHypRef Expression
1 oprabexd.4 . 2 (𝜑𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
2 oprabexd.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → ∃*𝑧𝜓)
32ex 449 . . . . . 6 (𝜑 → ((𝑥𝐴𝑦𝐵) → ∃*𝑧𝜓))
4 moanimv 2519 . . . . . 6 (∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜓) ↔ ((𝑥𝐴𝑦𝐵) → ∃*𝑧𝜓))
53, 4sylibr 223 . . . . 5 (𝜑 → ∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜓))
65alrimivv 1843 . . . 4 (𝜑 → ∀𝑥𝑦∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜓))
7 funoprabg 6657 . . . 4 (∀𝑥𝑦∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝜓) → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
86, 7syl 17 . . 3 (𝜑 → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)})
9 dmoprabss 6640 . . . 4 dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ⊆ (𝐴 × 𝐵)
10 oprabexd.1 . . . . 5 (𝜑𝐴 ∈ V)
11 oprabexd.2 . . . . 5 (𝜑𝐵 ∈ V)
12 xpexg 6858 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 × 𝐵) ∈ V)
1310, 11, 12syl2anc 691 . . . 4 (𝜑 → (𝐴 × 𝐵) ∈ V)
14 ssexg 4732 . . . 4 ((dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ⊆ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ∈ V) → dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
159, 13, 14sylancr 694 . . 3 (𝜑 → dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
16 funex 6387 . . 3 ((Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∧ dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
178, 15, 16syl2anc 691 . 2 (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜓)} ∈ V)
181, 17eqeltrd 2688 1 (𝜑𝐹 ∈ V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∀wal 1473   = wceq 1475   ∈ wcel 1977  ∃*wmo 2459  Vcvv 3173   ⊆ wss 3540   × cxp 5036  dom cdm 5038  Fun wfun 5798  {coprab 6550 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-oprab 6553 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator