Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moanimv | Structured version Visualization version GIF version |
Description: Introduction of a conjunct into "at most one" quantifier. (Contributed by NM, 23-Mar-1995.) |
Ref | Expression |
---|---|
moanimv | ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1830 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | moanim 2517 | 1 ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∃*wmo 2459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-eu 2462 df-mo 2463 |
This theorem is referenced by: 2reuswap 3377 2reu5lem2 3381 funmo 5820 funcnv 5872 fncnv 5876 isarep2 5892 fnres 5921 mptfnf 5928 fnopabg 5930 fvopab3ig 6188 opabex 6388 fnoprabg 6659 ovidi 6677 ovig 6680 caovmo 6769 zfrep6 7027 oprabexd 7046 oprabex 7047 nqerf 9631 cnextfun 21678 perfdvf 23473 taylf 23919 2reuswap2 28712 abrexdomjm 28729 abrexdom 32695 2rmoswap 39833 |
Copyright terms: Public domain | W3C validator |