MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabexd Structured version   Unicode version

Theorem oprabexd 6772
Description: Existence of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
oprabexd.1  |-  ( ph  ->  A  e.  _V )
oprabexd.2  |-  ( ph  ->  B  e.  _V )
oprabexd.3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  E* z ps )
oprabexd.4  |-  ( ph  ->  F  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ps ) } )
Assertion
Ref Expression
oprabexd  |-  ( ph  ->  F  e.  _V )
Distinct variable groups:    x, A, y, z    x, B, y, z    ph, x, y, z
Allowed substitution hints:    ps( x, y, z)    F( x, y, z)

Proof of Theorem oprabexd
StepHypRef Expression
1 oprabexd.4 . 2  |-  ( ph  ->  F  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  ps ) } )
2 oprabexd.3 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  ->  E* z ps )
32ex 434 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ps ) )
4 moanimv 2356 . . . . . 6  |-  ( E* z ( ( x  e.  A  /\  y  e.  B )  /\  ps ) 
<->  ( ( x  e.  A  /\  y  e.  B )  ->  E* z ps ) )
53, 4sylibr 212 . . . . 5  |-  ( ph  ->  E* z ( ( x  e.  A  /\  y  e.  B )  /\  ps ) )
65alrimivv 1696 . . . 4  |-  ( ph  ->  A. x A. y E* z ( ( x  e.  A  /\  y  e.  B )  /\  ps ) )
7 funoprabg 6386 . . . 4  |-  ( A. x A. y E* z
( ( x  e.  A  /\  y  e.  B )  /\  ps )  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) } )
86, 7syl 16 . . 3  |-  ( ph  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) } )
9 dmoprabss 6369 . . . 4  |-  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }  C_  ( A  X.  B )
10 oprabexd.1 . . . . 5  |-  ( ph  ->  A  e.  _V )
11 oprabexd.2 . . . . 5  |-  ( ph  ->  B  e.  _V )
12 xpexg 6587 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A  X.  B
)  e.  _V )
1310, 11, 12syl2anc 661 . . . 4  |-  ( ph  ->  ( A  X.  B
)  e.  _V )
14 ssexg 4593 . . . 4  |-  ( ( dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  C_  ( A  X.  B
)  /\  ( A  X.  B )  e.  _V )  ->  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )
159, 13, 14sylancr 663 . . 3  |-  ( ph  ->  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )
16 funex 6129 . . 3  |-  ( ( Fun  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  /\  dom  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )  ->  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )
178, 15, 16syl2anc 661 . 2  |-  ( ph  ->  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  ps ) }  e.  _V )
181, 17eqeltrd 2555 1  |-  ( ph  ->  F  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1377    = wceq 1379    e. wcel 1767   E*wmo 2276   _Vcvv 3113    C_ wss 3476    X. cxp 4997   dom cdm 4999   Fun wfun 5582   {coprab 6286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-oprab 6289
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator