Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omsval Structured version   Visualization version   GIF version

Theorem omsval 29682
Description: Value of the function mapping a content function to the corresponding outer measure. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Assertion
Ref Expression
omsval (𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
Distinct variable group:   𝑥,𝑎,𝑦,𝑧,𝑅

Proof of Theorem omsval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 df-oms 29681 . . 3 toOMeas = (𝑟 ∈ V ↦ (𝑎 ∈ 𝒫 dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)), (0[,]+∞), < )))
21a1i 11 . 2 (𝑅 ∈ V → toOMeas = (𝑟 ∈ V ↦ (𝑎 ∈ 𝒫 dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)), (0[,]+∞), < ))))
3 dmeq 5246 . . . . . 6 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
43unieqd 4382 . . . . 5 (𝑟 = 𝑅 dom 𝑟 = dom 𝑅)
54pweqd 4113 . . . 4 (𝑟 = 𝑅 → 𝒫 dom 𝑟 = 𝒫 dom 𝑅)
63pweqd 4113 . . . . . . . 8 (𝑟 = 𝑅 → 𝒫 dom 𝑟 = 𝒫 dom 𝑅)
7 rabeq 3166 . . . . . . . 8 (𝒫 dom 𝑟 = 𝒫 dom 𝑅 → {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} = {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)})
86, 7syl 17 . . . . . . 7 (𝑟 = 𝑅 → {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} = {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)})
9 simpl 472 . . . . . . . . 9 ((𝑟 = 𝑅𝑦𝑥) → 𝑟 = 𝑅)
109fveq1d 6105 . . . . . . . 8 ((𝑟 = 𝑅𝑦𝑥) → (𝑟𝑦) = (𝑅𝑦))
1110esumeq2dv 29427 . . . . . . 7 (𝑟 = 𝑅 → Σ*𝑦𝑥(𝑟𝑦) = Σ*𝑦𝑥(𝑅𝑦))
128, 11mpteq12dv 4663 . . . . . 6 (𝑟 = 𝑅 → (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
1312rneqd 5274 . . . . 5 (𝑟 = 𝑅 → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)) = ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
1413infeq1d 8266 . . . 4 (𝑟 = 𝑅 → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)), (0[,]+∞), < ) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
155, 14mpteq12dv 4663 . . 3 (𝑟 = 𝑅 → (𝑎 ∈ 𝒫 dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)), (0[,]+∞), < )) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
1615adantl 481 . 2 ((𝑅 ∈ V ∧ 𝑟 = 𝑅) → (𝑎 ∈ 𝒫 dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)), (0[,]+∞), < )) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
17 id 22 . 2 (𝑅 ∈ V → 𝑅 ∈ V)
18 dmexg 6989 . . 3 (𝑅 ∈ V → dom 𝑅 ∈ V)
19 uniexg 6853 . . 3 (dom 𝑅 ∈ V → dom 𝑅 ∈ V)
20 pwexg 4776 . . 3 ( dom 𝑅 ∈ V → 𝒫 dom 𝑅 ∈ V)
21 mptexg 6389 . . 3 (𝒫 dom 𝑅 ∈ V → (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )) ∈ V)
2218, 19, 20, 214syl 19 . 2 (𝑅 ∈ V → (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )) ∈ V)
232, 16, 17, 22fvmptd 6197 1 (𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  wss 3540  𝒫 cpw 4108   cuni 4372   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039  cfv 5804  (class class class)co 6549  ωcom 6957  cdom 7839  infcinf 8230  0cc0 9815  +∞cpnf 9950   < clt 9953  [,]cicc 12049  Σ*cesum 29416  toOMeascoms 29680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-sup 8231  df-inf 8232  df-esum 29417  df-oms 29681
This theorem is referenced by:  omsfval  29683  omsf  29685
  Copyright terms: Public domain W3C validator