Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omsfval Structured version   Visualization version   GIF version

Theorem omsfval 29683
Description: Value of the outer measure evaluated for a given set 𝐴. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Assertion
Ref Expression
omsfval ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧   𝑥,𝑄,𝑦,𝑧   𝑥,𝑉,𝑦,𝑧

Proof of Theorem omsfval
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simp2 1055 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝑅:𝑄⟶(0[,]+∞))
2 simp1 1054 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝑄𝑉)
3 fex 6394 . . . 4 ((𝑅:𝑄⟶(0[,]+∞) ∧ 𝑄𝑉) → 𝑅 ∈ V)
41, 2, 3syl2anc 691 . . 3 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝑅 ∈ V)
5 omsval 29682 . . 3 (𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
64, 5syl 17 . 2 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
7 simpr 476 . . . . . . . 8 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → 𝑎 = 𝐴)
87sseq1d 3595 . . . . . . 7 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → (𝑎 𝑧𝐴 𝑧))
98anbi1d 737 . . . . . 6 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → ((𝑎 𝑧𝑧 ≼ ω) ↔ (𝐴 𝑧𝑧 ≼ ω)))
109rabbidv 3164 . . . . 5 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} = {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)})
1110mpteq1d 4666 . . . 4 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) = (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
1211rneqd 5274 . . 3 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) = ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)))
1312infeq1d 8266 . 2 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) ∧ 𝑎 = 𝐴) → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
14 simp3 1056 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝐴 𝑄)
15 fdm 5964 . . . . . 6 (𝑅:𝑄⟶(0[,]+∞) → dom 𝑅 = 𝑄)
16153ad2ant2 1076 . . . . 5 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → dom 𝑅 = 𝑄)
1716unieqd 4382 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → dom 𝑅 = 𝑄)
1814, 17sseqtr4d 3605 . . 3 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝐴 dom 𝑅)
19 elex 3185 . . . . . 6 (𝑄𝑉𝑄 ∈ V)
20 uniexb 6866 . . . . . . 7 (𝑄 ∈ V ↔ 𝑄 ∈ V)
2120biimpi 205 . . . . . 6 (𝑄 ∈ V → 𝑄 ∈ V)
222, 19, 213syl 18 . . . . 5 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝑄 ∈ V)
23 ssexg 4732 . . . . 5 ((𝐴 𝑄 𝑄 ∈ V) → 𝐴 ∈ V)
2414, 22, 23syl2anc 691 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝐴 ∈ V)
25 elpwg 4116 . . . 4 (𝐴 ∈ V → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
2624, 25syl 17 . . 3 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → (𝐴 ∈ 𝒫 dom 𝑅𝐴 dom 𝑅))
2718, 26mpbird 246 . 2 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → 𝐴 ∈ 𝒫 dom 𝑅)
28 xrltso 11850 . . . 4 < Or ℝ*
29 iccssxr 12127 . . . . 5 (0[,]+∞) ⊆ ℝ*
30 soss 4977 . . . . 5 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
3129, 30ax-mp 5 . . . 4 ( < Or ℝ* → < Or (0[,]+∞))
3228, 31mp1i 13 . . 3 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → < Or (0[,]+∞))
3332infexd 8272 . 2 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ) ∈ V)
346, 13, 27, 33fvmptd 6197 1 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  wss 3540  𝒫 cpw 4108   cuni 4372   class class class wbr 4583  cmpt 4643   Or wor 4958  dom cdm 5038  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  ωcom 6957  cdom 7839  infcinf 8230  0cc0 9815  +∞cpnf 9950  *cxr 9952   < clt 9953  [,]cicc 12049  Σ*cesum 29416  toOMeascoms 29680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-icc 12053  df-esum 29417  df-oms 29681
This theorem is referenced by:  omsf  29685  oms0  29686  omsmon  29687  omssubaddlem  29688  omssubadd  29689
  Copyright terms: Public domain W3C validator