MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1compt Structured version   Visualization version   GIF version

Theorem o1compt 14166
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
o1compt.1 (𝜑𝐹:𝐴⟶ℂ)
o1compt.2 (𝜑𝐹 ∈ 𝑂(1))
o1compt.3 ((𝜑𝑦𝐵) → 𝐶𝐴)
o1compt.4 (𝜑𝐵 ⊆ ℝ)
o1compt.5 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶))
Assertion
Ref Expression
o1compt (𝜑 → (𝐹 ∘ (𝑦𝐵𝐶)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚,𝑦,𝐴   𝐵,𝑚,𝑥,𝑦   𝐶,𝑚,𝑥   𝜑,𝑚,𝑥,𝑦   𝑚,𝐹,𝑥
Allowed substitution hints:   𝐶(𝑦)   𝐹(𝑦)

Proof of Theorem o1compt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 o1compt.1 . 2 (𝜑𝐹:𝐴⟶ℂ)
2 o1compt.2 . 2 (𝜑𝐹 ∈ 𝑂(1))
3 o1compt.3 . . 3 ((𝜑𝑦𝐵) → 𝐶𝐴)
4 eqid 2610 . . 3 (𝑦𝐵𝐶) = (𝑦𝐵𝐶)
53, 4fmptd 6292 . 2 (𝜑 → (𝑦𝐵𝐶):𝐵𝐴)
6 o1compt.4 . 2 (𝜑𝐵 ⊆ ℝ)
7 o1compt.5 . . 3 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶))
8 nfv 1830 . . . . . . . 8 𝑦 𝑥𝑧
9 nfcv 2751 . . . . . . . . 9 𝑦𝑚
10 nfcv 2751 . . . . . . . . 9 𝑦
11 nffvmpt1 6111 . . . . . . . . 9 𝑦((𝑦𝐵𝐶)‘𝑧)
129, 10, 11nfbr 4629 . . . . . . . 8 𝑦 𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)
138, 12nfim 1813 . . . . . . 7 𝑦(𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧))
14 nfv 1830 . . . . . . 7 𝑧(𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦))
15 breq2 4587 . . . . . . . 8 (𝑧 = 𝑦 → (𝑥𝑧𝑥𝑦))
16 fveq2 6103 . . . . . . . . 9 (𝑧 = 𝑦 → ((𝑦𝐵𝐶)‘𝑧) = ((𝑦𝐵𝐶)‘𝑦))
1716breq2d 4595 . . . . . . . 8 (𝑧 = 𝑦 → (𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧) ↔ 𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦)))
1815, 17imbi12d 333 . . . . . . 7 (𝑧 = 𝑦 → ((𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ (𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦))))
1913, 14, 18cbvral 3143 . . . . . 6 (∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ ∀𝑦𝐵 (𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦)))
20 simpr 476 . . . . . . . . . 10 ((𝜑𝑦𝐵) → 𝑦𝐵)
214fvmpt2 6200 . . . . . . . . . 10 ((𝑦𝐵𝐶𝐴) → ((𝑦𝐵𝐶)‘𝑦) = 𝐶)
2220, 3, 21syl2anc 691 . . . . . . . . 9 ((𝜑𝑦𝐵) → ((𝑦𝐵𝐶)‘𝑦) = 𝐶)
2322breq2d 4595 . . . . . . . 8 ((𝜑𝑦𝐵) → (𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦) ↔ 𝑚𝐶))
2423imbi2d 329 . . . . . . 7 ((𝜑𝑦𝐵) → ((𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦)) ↔ (𝑥𝑦𝑚𝐶)))
2524ralbidva 2968 . . . . . 6 (𝜑 → (∀𝑦𝐵 (𝑥𝑦𝑚 ≤ ((𝑦𝐵𝐶)‘𝑦)) ↔ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶)))
2619, 25syl5bb 271 . . . . 5 (𝜑 → (∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶)))
2726rexbidv 3034 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶)))
2827adantr 480 . . 3 ((𝜑𝑚 ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)) ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐵 (𝑥𝑦𝑚𝐶)))
297, 28mpbird 246 . 2 ((𝜑𝑚 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑧𝐵 (𝑥𝑧𝑚 ≤ ((𝑦𝐵𝐶)‘𝑧)))
301, 2, 5, 6, 29o1co 14165 1 (𝜑 → (𝐹 ∘ (𝑦𝐵𝐶)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  wss 3540   class class class wbr 4583  cmpt 4643  ccom 5042  wf 5800  cfv 5804  cc 9813  cr 9814  cle 9954  𝑂(1)co1 14065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-ico 12052  df-o1 14069
This theorem is referenced by:  dchrisum0  25009
  Copyright terms: Public domain W3C validator