MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1compt Structured version   Unicode version

Theorem o1compt 13464
Description: Sufficient condition for transforming the index set of an eventually bounded function. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
o1compt.1  |-  ( ph  ->  F : A --> CC )
o1compt.2  |-  ( ph  ->  F  e.  O(1) )
o1compt.3  |-  ( (
ph  /\  y  e.  B )  ->  C  e.  A )
o1compt.4  |-  ( ph  ->  B  C_  RR )
o1compt.5  |-  ( (
ph  /\  m  e.  RR )  ->  E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  C ) )
Assertion
Ref Expression
o1compt  |-  ( ph  ->  ( F  o.  (
y  e.  B  |->  C ) )  e.  O(1) )
Distinct variable groups:    x, m, y, A    B, m, x, y    C, m, x    ph, m, x, y    m, F, x
Allowed substitution hints:    C( y)    F( y)

Proof of Theorem o1compt
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 o1compt.1 . 2  |-  ( ph  ->  F : A --> CC )
2 o1compt.2 . 2  |-  ( ph  ->  F  e.  O(1) )
3 o1compt.3 . . 3  |-  ( (
ph  /\  y  e.  B )  ->  C  e.  A )
4 eqid 2400 . . 3  |-  ( y  e.  B  |->  C )  =  ( y  e.  B  |->  C )
53, 4fmptd 5987 . 2  |-  ( ph  ->  ( y  e.  B  |->  C ) : B --> A )
6 o1compt.4 . 2  |-  ( ph  ->  B  C_  RR )
7 o1compt.5 . . 3  |-  ( (
ph  /\  m  e.  RR )  ->  E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  C ) )
8 nfv 1726 . . . . . . . 8  |-  F/ y  x  <_  z
9 nfcv 2562 . . . . . . . . 9  |-  F/_ y
m
10 nfcv 2562 . . . . . . . . 9  |-  F/_ y  <_
11 nffvmpt1 5811 . . . . . . . . 9  |-  F/_ y
( ( y  e.  B  |->  C ) `  z )
129, 10, 11nfbr 4436 . . . . . . . 8  |-  F/ y  m  <_  ( (
y  e.  B  |->  C ) `  z )
138, 12nfim 1946 . . . . . . 7  |-  F/ y ( x  <_  z  ->  m  <_  ( (
y  e.  B  |->  C ) `  z ) )
14 nfv 1726 . . . . . . 7  |-  F/ z ( x  <_  y  ->  m  <_  ( (
y  e.  B  |->  C ) `  y ) )
15 breq2 4396 . . . . . . . 8  |-  ( z  =  y  ->  (
x  <_  z  <->  x  <_  y ) )
16 fveq2 5803 . . . . . . . . 9  |-  ( z  =  y  ->  (
( y  e.  B  |->  C ) `  z
)  =  ( ( y  e.  B  |->  C ) `  y ) )
1716breq2d 4404 . . . . . . . 8  |-  ( z  =  y  ->  (
m  <_  ( (
y  e.  B  |->  C ) `  z )  <-> 
m  <_  ( (
y  e.  B  |->  C ) `  y ) ) )
1815, 17imbi12d 318 . . . . . . 7  |-  ( z  =  y  ->  (
( x  <_  z  ->  m  <_  ( (
y  e.  B  |->  C ) `  z ) )  <->  ( x  <_ 
y  ->  m  <_  ( ( y  e.  B  |->  C ) `  y
) ) ) )
1913, 14, 18cbvral 3027 . . . . . 6  |-  ( A. z  e.  B  (
x  <_  z  ->  m  <_  ( ( y  e.  B  |->  C ) `
 z ) )  <->  A. y  e.  B  ( x  <_  y  ->  m  <_  ( ( y  e.  B  |->  C ) `
 y ) ) )
20 simpr 459 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  B )  ->  y  e.  B )
214fvmpt2 5895 . . . . . . . . . 10  |-  ( ( y  e.  B  /\  C  e.  A )  ->  ( ( y  e.  B  |->  C ) `  y )  =  C )
2220, 3, 21syl2anc 659 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  B )  ->  (
( y  e.  B  |->  C ) `  y
)  =  C )
2322breq2d 4404 . . . . . . . 8  |-  ( (
ph  /\  y  e.  B )  ->  (
m  <_  ( (
y  e.  B  |->  C ) `  y )  <-> 
m  <_  C )
)
2423imbi2d 314 . . . . . . 7  |-  ( (
ph  /\  y  e.  B )  ->  (
( x  <_  y  ->  m  <_  ( (
y  e.  B  |->  C ) `  y ) )  <->  ( x  <_ 
y  ->  m  <_  C ) ) )
2524ralbidva 2837 . . . . . 6  |-  ( ph  ->  ( A. y  e.  B  ( x  <_ 
y  ->  m  <_  ( ( y  e.  B  |->  C ) `  y
) )  <->  A. y  e.  B  ( x  <_  y  ->  m  <_  C ) ) )
2619, 25syl5bb 257 . . . . 5  |-  ( ph  ->  ( A. z  e.  B  ( x  <_ 
z  ->  m  <_  ( ( y  e.  B  |->  C ) `  z
) )  <->  A. y  e.  B  ( x  <_  y  ->  m  <_  C ) ) )
2726rexbidv 2915 . . . 4  |-  ( ph  ->  ( E. x  e.  RR  A. z  e.  B  ( x  <_ 
z  ->  m  <_  ( ( y  e.  B  |->  C ) `  z
) )  <->  E. x  e.  RR  A. y  e.  B  ( x  <_ 
y  ->  m  <_  C ) ) )
2827adantr 463 . . 3  |-  ( (
ph  /\  m  e.  RR )  ->  ( E. x  e.  RR  A. z  e.  B  (
x  <_  z  ->  m  <_  ( ( y  e.  B  |->  C ) `
 z ) )  <->  E. x  e.  RR  A. y  e.  B  ( x  <_  y  ->  m  <_  C ) ) )
297, 28mpbird 232 . 2  |-  ( (
ph  /\  m  e.  RR )  ->  E. x  e.  RR  A. z  e.  B  ( x  <_ 
z  ->  m  <_  ( ( y  e.  B  |->  C ) `  z
) ) )
301, 2, 5, 6, 29o1co 13463 1  |-  ( ph  ->  ( F  o.  (
y  e.  B  |->  C ) )  e.  O(1) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1403    e. wcel 1840   A.wral 2751   E.wrex 2752    C_ wss 3411   class class class wbr 4392    |-> cmpt 4450    o. ccom 4944   -->wf 5519   ` cfv 5523   CCcc 9438   RRcr 9439    <_ cle 9577   O(1)co1 13363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528  ax-cnex 9496  ax-resscn 9497  ax-pre-lttri 9514  ax-pre-lttrn 9515
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 973  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-nel 2599  df-ral 2756  df-rex 2757  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-op 3976  df-uni 4189  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4735  df-po 4741  df-so 4742  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-ov 6235  df-oprab 6236  df-mpt2 6237  df-er 7266  df-pm 7378  df-en 7473  df-dom 7474  df-sdom 7475  df-pnf 9578  df-mnf 9579  df-xr 9580  df-ltxr 9581  df-le 9582  df-ico 11504  df-o1 13367
This theorem is referenced by:  dchrisum0  23976
  Copyright terms: Public domain W3C validator