Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneik2 Structured version   Visualization version   GIF version

Theorem ntrneik2 37410
 Description: An interior function is contracting if and only if all the neighborhoods of a point contain that point. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneik2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚,𝑠,𝑥   𝑘,𝐼,𝑙,𝑚,𝑥   𝜑,𝑖,𝑗,𝑘,𝑙,𝑠,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝐼(𝑖,𝑗,𝑠)   𝑁(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)   𝑂(𝑥,𝑖,𝑗,𝑘,𝑚,𝑠,𝑙)

Proof of Theorem ntrneik2
StepHypRef Expression
1 ntrnei.o . . . . . . . . . . . . . 14 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . . . . . . . . . . . . 14 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . . . . . . . . . . . . 14 (𝜑𝐼𝐹𝑁)
41, 2, 3ntrneiiex 37394 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
5 elmapi 7765 . . . . . . . . . . . . 13 (𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
64, 5syl 17 . . . . . . . . . . . 12 (𝜑𝐼:𝒫 𝐵⟶𝒫 𝐵)
76ffvelrnda 6267 . . . . . . . . . . 11 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ∈ 𝒫 𝐵)
87elpwid 4118 . . . . . . . . . 10 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐼𝑠) ⊆ 𝐵)
98sselda 3568 . . . . . . . . 9 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝐼𝑠)) → 𝑥𝐵)
10 biimt 349 . . . . . . . . 9 (𝑥𝐵 → (𝑥𝑠 ↔ (𝑥𝐵𝑥𝑠)))
119, 10syl 17 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝐼𝑠)) → (𝑥𝑠 ↔ (𝑥𝐵𝑥𝑠)))
1211pm5.74da 719 . . . . . . 7 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ (𝑥 ∈ (𝐼𝑠) → (𝑥𝐵𝑥𝑠))))
13 bi2.04 375 . . . . . . 7 ((𝑥 ∈ (𝐼𝑠) → (𝑥𝐵𝑥𝑠)) ↔ (𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠)))
1412, 13syl6bb 275 . . . . . 6 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ (𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠))))
1514albidv 1836 . . . . 5 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥(𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ ∀𝑥(𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠))))
16 dfss2 3557 . . . . 5 ((𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥(𝑥 ∈ (𝐼𝑠) → 𝑥𝑠))
17 df-ral 2901 . . . . 5 (∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ ∀𝑥(𝑥𝐵 → (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠)))
1815, 16, 173bitr4g 302 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠)))
193ad2antrr 758 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝐼𝐹𝑁)
20 simpr 476 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑥𝐵)
21 simplr 788 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → 𝑠 ∈ 𝒫 𝐵)
221, 2, 19, 20, 21ntrneiel 37399 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → (𝑥 ∈ (𝐼𝑠) ↔ 𝑠 ∈ (𝑁𝑥)))
2322imbi1d 330 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵) ∧ 𝑥𝐵) → ((𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
2423ralbidva 2968 . . . 4 ((𝜑𝑠 ∈ 𝒫 𝐵) → (∀𝑥𝐵 (𝑥 ∈ (𝐼𝑠) → 𝑥𝑠) ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
2518, 24bitrd 267 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → ((𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥𝐵 (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
2625ralbidva 2968 . 2 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
27 ralcom 3079 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑥𝐵 (𝑠 ∈ (𝑁𝑥) → 𝑥𝑠) ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) → 𝑥𝑠))
2826, 27syl6bb 275 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵(𝐼𝑠) ⊆ 𝑠 ↔ ∀𝑥𝐵𝑠 ∈ 𝒫 𝐵(𝑠 ∈ (𝑁𝑥) → 𝑥𝑠)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383  ∀wal 1473   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900  Vcvv 3173   ⊆ wss 3540  𝒫 cpw 4108   class class class wbr 4583   ↦ cmpt 4643  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551   ↑𝑚 cmap 7744 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator