Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneiiex Structured version   Visualization version   GIF version

Theorem ntrneiiex 37394
 Description: If (pseudo-)interior and (pseudo-)neighborhood functions are related by the operator, 𝐹, then the interior function exists. (Contributed by RP, 29-May-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneiiex (𝜑𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝜑,𝑖,𝑗,𝑘,𝑙
Allowed substitution hints:   𝜑(𝑚)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneiiex
StepHypRef Expression
1 ntrnei.o . . . . 5 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗𝑚 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . . . 5 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . . . 5 (𝜑𝐼𝐹𝑁)
41, 2, 3ntrneif1o 37393 . . . 4 (𝜑𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵))
5 f1orel 6053 . . . 4 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) → Rel 𝐹)
64, 5syl 17 . . 3 (𝜑 → Rel 𝐹)
7 releldm 5279 . . 3 ((Rel 𝐹𝐼𝐹𝑁) → 𝐼 ∈ dom 𝐹)
86, 3, 7syl2anc 691 . 2 (𝜑𝐼 ∈ dom 𝐹)
9 f1odm 6054 . . 3 (𝐹:(𝒫 𝐵𝑚 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵𝑚 𝐵) → dom 𝐹 = (𝒫 𝐵𝑚 𝒫 𝐵))
104, 9syl 17 . 2 (𝜑 → dom 𝐹 = (𝒫 𝐵𝑚 𝒫 𝐵))
118, 10eleqtrd 2690 1 (𝜑𝐼 ∈ (𝒫 𝐵𝑚 𝒫 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  {crab 2900  Vcvv 3173  𝒫 cpw 4108   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  Rel wrel 5043  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551   ↑𝑚 cmap 7744 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746 This theorem is referenced by:  ntrneifv1  37397  ntrneifv2  37398  ntrneiel  37399  ntrneifv4  37403  ntrneiel2  37404  ntrneicls00  37407  ntrneicls11  37408  ntrneiiso  37409  ntrneik2  37410  ntrneikb  37412  ntrneixb  37413  ntrneik3  37414  ntrneix3  37415  ntrneik13  37416  ntrneix13  37417  ntrneik4w  37418  ntrneik4  37419
 Copyright terms: Public domain W3C validator