Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nobndlem2 Structured version   Visualization version   GIF version

Theorem nobndlem2 31092
Description: Lemma for nobndup 31099 and nobnddown 31100. Show a particular abstraction is an ordinal. (Contributed by Scott Fenton, 17-Aug-2011.)
Hypotheses
Ref Expression
nobndlem2.1 𝑋 ∈ {1𝑜, 2𝑜}
nobndlem2.2 𝐶 = {𝑎 ∈ On ∣ ∀𝑛𝐹𝑏𝑎 (𝑛𝑏) ≠ 𝑋}
Assertion
Ref Expression
nobndlem2 ((𝐹 No 𝐹𝐴) → 𝐶 ∈ On)
Distinct variable groups:   𝐹,𝑎,𝑏,𝑛   𝑋,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑛,𝑎,𝑏)   𝐶(𝑛,𝑎,𝑏)   𝑋(𝑛)

Proof of Theorem nobndlem2
StepHypRef Expression
1 nobndlem2.2 . 2 𝐶 = {𝑎 ∈ On ∣ ∀𝑛𝐹𝑏𝑎 (𝑛𝑏) ≠ 𝑋}
2 nobndlem1 31091 . . . 4 (𝐹𝐴 → suc ( bday 𝐹) ∈ On)
3 ssel2 3563 . . . . . . . . . 10 ((𝐹 No 𝑛𝐹) → 𝑛 No )
4 bdaydm 31077 . . . . . . . . . 10 dom bday = No
53, 4syl6eleqr 2699 . . . . . . . . 9 ((𝐹 No 𝑛𝐹) → 𝑛 ∈ dom bday )
6 simpr 476 . . . . . . . . 9 ((𝐹 No 𝑛𝐹) → 𝑛𝐹)
7 bdayfun 31075 . . . . . . . . . 10 Fun bday
8 funfvima 6396 . . . . . . . . . 10 ((Fun bday 𝑛 ∈ dom bday ) → (𝑛𝐹 → ( bday 𝑛) ∈ ( bday 𝐹)))
97, 8mpan 702 . . . . . . . . 9 (𝑛 ∈ dom bday → (𝑛𝐹 → ( bday 𝑛) ∈ ( bday 𝐹)))
105, 6, 9sylc 63 . . . . . . . 8 ((𝐹 No 𝑛𝐹) → ( bday 𝑛) ∈ ( bday 𝐹))
11 elssuni 4403 . . . . . . . 8 (( bday 𝑛) ∈ ( bday 𝐹) → ( bday 𝑛) ⊆ ( bday 𝐹))
1210, 11syl 17 . . . . . . 7 ((𝐹 No 𝑛𝐹) → ( bday 𝑛) ⊆ ( bday 𝐹))
13 bdayelon 31079 . . . . . . . 8 ( bday 𝑛) ∈ On
14 imassrn 5396 . . . . . . . . . 10 ( bday 𝐹) ⊆ ran bday
15 bdayrn 31076 . . . . . . . . . 10 ran bday = On
1614, 15sseqtri 3600 . . . . . . . . 9 ( bday 𝐹) ⊆ On
17 ssorduni 6877 . . . . . . . . 9 (( bday 𝐹) ⊆ On → Ord ( bday 𝐹))
1816, 17ax-mp 5 . . . . . . . 8 Ord ( bday 𝐹)
19 ordsssuc 5729 . . . . . . . 8 ((( bday 𝑛) ∈ On ∧ Ord ( bday 𝐹)) → (( bday 𝑛) ⊆ ( bday 𝐹) ↔ ( bday 𝑛) ∈ suc ( bday 𝐹)))
2013, 18, 19mp2an 704 . . . . . . 7 (( bday 𝑛) ⊆ ( bday 𝐹) ↔ ( bday 𝑛) ∈ suc ( bday 𝐹))
2112, 20sylib 207 . . . . . 6 ((𝐹 No 𝑛𝐹) → ( bday 𝑛) ∈ suc ( bday 𝐹))
22 nobndlem2.1 . . . . . . . 8 𝑋 ∈ {1𝑜, 2𝑜}
2322nosgnn0i 31056 . . . . . . 7 ∅ ≠ 𝑋
24 fvnobday 31081 . . . . . . . . 9 (𝑛 No → (𝑛‘( bday 𝑛)) = ∅)
253, 24syl 17 . . . . . . . 8 ((𝐹 No 𝑛𝐹) → (𝑛‘( bday 𝑛)) = ∅)
2625neeq1d 2841 . . . . . . 7 ((𝐹 No 𝑛𝐹) → ((𝑛‘( bday 𝑛)) ≠ 𝑋 ↔ ∅ ≠ 𝑋))
2723, 26mpbiri 247 . . . . . 6 ((𝐹 No 𝑛𝐹) → (𝑛‘( bday 𝑛)) ≠ 𝑋)
28 fveq2 6103 . . . . . . . 8 (𝑏 = ( bday 𝑛) → (𝑛𝑏) = (𝑛‘( bday 𝑛)))
2928neeq1d 2841 . . . . . . 7 (𝑏 = ( bday 𝑛) → ((𝑛𝑏) ≠ 𝑋 ↔ (𝑛‘( bday 𝑛)) ≠ 𝑋))
3029rspcev 3282 . . . . . 6 ((( bday 𝑛) ∈ suc ( bday 𝐹) ∧ (𝑛‘( bday 𝑛)) ≠ 𝑋) → ∃𝑏 ∈ suc ( bday 𝐹)(𝑛𝑏) ≠ 𝑋)
3121, 27, 30syl2anc 691 . . . . 5 ((𝐹 No 𝑛𝐹) → ∃𝑏 ∈ suc ( bday 𝐹)(𝑛𝑏) ≠ 𝑋)
3231ralrimiva 2949 . . . 4 (𝐹 No → ∀𝑛𝐹𝑏 ∈ suc ( bday 𝐹)(𝑛𝑏) ≠ 𝑋)
33 rexeq 3116 . . . . . 6 (𝑎 = suc ( bday 𝐹) → (∃𝑏𝑎 (𝑛𝑏) ≠ 𝑋 ↔ ∃𝑏 ∈ suc ( bday 𝐹)(𝑛𝑏) ≠ 𝑋))
3433ralbidv 2969 . . . . 5 (𝑎 = suc ( bday 𝐹) → (∀𝑛𝐹𝑏𝑎 (𝑛𝑏) ≠ 𝑋 ↔ ∀𝑛𝐹𝑏 ∈ suc ( bday 𝐹)(𝑛𝑏) ≠ 𝑋))
3534rspcev 3282 . . . 4 ((suc ( bday 𝐹) ∈ On ∧ ∀𝑛𝐹𝑏 ∈ suc ( bday 𝐹)(𝑛𝑏) ≠ 𝑋) → ∃𝑎 ∈ On ∀𝑛𝐹𝑏𝑎 (𝑛𝑏) ≠ 𝑋)
362, 32, 35syl2anr 494 . . 3 ((𝐹 No 𝐹𝐴) → ∃𝑎 ∈ On ∀𝑛𝐹𝑏𝑎 (𝑛𝑏) ≠ 𝑋)
37 onintrab2 6894 . . 3 (∃𝑎 ∈ On ∀𝑛𝐹𝑏𝑎 (𝑛𝑏) ≠ 𝑋 {𝑎 ∈ On ∣ ∀𝑛𝐹𝑏𝑎 (𝑛𝑏) ≠ 𝑋} ∈ On)
3836, 37sylib 207 . 2 ((𝐹 No 𝐹𝐴) → {𝑎 ∈ On ∣ ∀𝑛𝐹𝑏𝑎 (𝑛𝑏) ≠ 𝑋} ∈ On)
391, 38syl5eqel 2692 1 ((𝐹 No 𝐹𝐴) → 𝐶 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  wss 3540  c0 3874  {cpr 4127   cuni 4372   cint 4410  dom cdm 5038  ran crn 5039  cima 5041  Ord word 5639  Oncon0 5640  suc csuc 5642  Fun wfun 5798  cfv 5804  1𝑜c1o 7440  2𝑜c2o 7441   No csur 31037   bday cbday 31039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1o 7447  df-2o 7448  df-no 31040  df-bday 31042
This theorem is referenced by:  nobndlem3  31093  nobndup  31099  nobnddown  31100
  Copyright terms: Public domain W3C validator