Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  natcl Structured version   Visualization version   GIF version

Theorem natcl 16436
 Description: A component of a natural transformation is a morphism. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natrcl.1 𝑁 = (𝐶 Nat 𝐷)
natixp.2 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
natixp.b 𝐵 = (Base‘𝐶)
natixp.j 𝐽 = (Hom ‘𝐷)
natcl.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
natcl (𝜑 → (𝐴𝑋) ∈ ((𝐹𝑋)𝐽(𝐾𝑋)))

Proof of Theorem natcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 natrcl.1 . . 3 𝑁 = (𝐶 Nat 𝐷)
2 natixp.2 . . 3 (𝜑𝐴 ∈ (⟨𝐹, 𝐺𝑁𝐾, 𝐿⟩))
3 natixp.b . . 3 𝐵 = (Base‘𝐶)
4 natixp.j . . 3 𝐽 = (Hom ‘𝐷)
51, 2, 3, 4natixp 16435 . 2 (𝜑𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)))
6 natcl.1 . 2 (𝜑𝑋𝐵)
7 fveq2 6103 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
8 fveq2 6103 . . . 4 (𝑥 = 𝑋 → (𝐾𝑥) = (𝐾𝑋))
97, 8oveq12d 6567 . . 3 (𝑥 = 𝑋 → ((𝐹𝑥)𝐽(𝐾𝑥)) = ((𝐹𝑋)𝐽(𝐾𝑋)))
109fvixp 7799 . 2 ((𝐴X𝑥𝐵 ((𝐹𝑥)𝐽(𝐾𝑥)) ∧ 𝑋𝐵) → (𝐴𝑋) ∈ ((𝐹𝑋)𝐽(𝐾𝑋)))
115, 6, 10syl2anc 691 1 (𝜑 → (𝐴𝑋) ∈ ((𝐹𝑋)𝐽(𝐾𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  ⟨cop 4131  ‘cfv 5804  (class class class)co 6549  Xcixp 7794  Basecbs 15695  Hom chom 15779   Nat cnat 16424 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-ixp 7795  df-func 16341  df-nat 16426 This theorem is referenced by:  fuccocl  16447  fuclid  16449  fucrid  16450  fucass  16451  fucsect  16455  invfuc  16457  fucpropd  16460  evlfcllem  16684  evlfcl  16685  curfuncf  16701  yonedalem3a  16737  yonedalem3b  16742  yonedainv  16744  yonffthlem  16745
 Copyright terms: Public domain W3C validator