MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curfuncf Structured version   Visualization version   GIF version

Theorem curfuncf 16701
Description: Cancellation of curry with uncurry. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfval.g 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
uncfval.c (𝜑𝐷 ∈ Cat)
uncfval.d (𝜑𝐸 ∈ Cat)
uncfval.f (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
Assertion
Ref Expression
curfuncf (𝜑 → (⟨𝐶, 𝐷⟩ curryF 𝐹) = 𝐺)

Proof of Theorem curfuncf
Dummy variables 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uncfval.g . . . . . . . . . 10 𝐹 = (⟨“𝐶𝐷𝐸”⟩ uncurryF 𝐺)
2 uncfval.c . . . . . . . . . . 11 (𝜑𝐷 ∈ Cat)
32ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
4 uncfval.d . . . . . . . . . . 11 (𝜑𝐸 ∈ Cat)
54ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐸 ∈ Cat)
6 uncfval.f . . . . . . . . . . 11 (𝜑𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
76ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
8 eqid 2610 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
9 eqid 2610 . . . . . . . . . 10 (Base‘𝐷) = (Base‘𝐷)
10 simplr 788 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶))
11 simpr 476 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐷))
121, 3, 5, 7, 8, 9, 10, 11uncf1 16699 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (𝑥(1st𝐹)𝑦) = ((1st ‘((1st𝐺)‘𝑥))‘𝑦))
1312mpteq2dva 4672 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)) = (𝑦 ∈ (Base‘𝐷) ↦ ((1st ‘((1st𝐺)‘𝑥))‘𝑦)))
14 eqid 2610 . . . . . . . . . 10 (Base‘𝐸) = (Base‘𝐸)
15 relfunc 16345 . . . . . . . . . . 11 Rel (𝐷 Func 𝐸)
16 eqid 2610 . . . . . . . . . . . . . 14 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
1716fucbas 16443 . . . . . . . . . . . . 13 (𝐷 Func 𝐸) = (Base‘(𝐷 FuncCat 𝐸))
18 relfunc 16345 . . . . . . . . . . . . . 14 Rel (𝐶 Func (𝐷 FuncCat 𝐸))
19 1st2ndbr 7108 . . . . . . . . . . . . . 14 ((Rel (𝐶 Func (𝐷 FuncCat 𝐸)) ∧ 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
2018, 6, 19sylancr 694 . . . . . . . . . . . . 13 (𝜑 → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
218, 17, 20funcf1 16349 . . . . . . . . . . . 12 (𝜑 → (1st𝐺):(Base‘𝐶)⟶(𝐷 Func 𝐸))
2221ffvelrnda 6267 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸))
23 1st2ndbr 7108 . . . . . . . . . . 11 ((Rel (𝐷 Func 𝐸) ∧ ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
2415, 22, 23sylancr 694 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
259, 14, 24funcf1 16349 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸))
2625feqmptd 6159 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (1st ‘((1st𝐺)‘𝑥)) = (𝑦 ∈ (Base‘𝐷) ↦ ((1st ‘((1st𝐺)‘𝑥))‘𝑦)))
2713, 26eqtr4d 2647 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)) = (1st ‘((1st𝐺)‘𝑥)))
282ad3antrrr 762 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐷 ∈ Cat)
294ad3antrrr 762 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐸 ∈ Cat)
306ad3antrrr 762 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
31 simpllr 795 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑥 ∈ (Base‘𝐶))
32 simplrl 796 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑦 ∈ (Base‘𝐷))
33 eqid 2610 . . . . . . . . . . . . . 14 (Hom ‘𝐶) = (Hom ‘𝐶)
34 eqid 2610 . . . . . . . . . . . . . 14 (Hom ‘𝐷) = (Hom ‘𝐷)
35 simprr 792 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → 𝑧 ∈ (Base‘𝐷))
3635adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑧 ∈ (Base‘𝐷))
37 eqid 2610 . . . . . . . . . . . . . . 15 (Id‘𝐶) = (Id‘𝐶)
38 funcrcl 16346 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)) → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
396, 38syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐶 ∈ Cat ∧ (𝐷 FuncCat 𝐸) ∈ Cat))
4039simpld 474 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ Cat)
4140ad3antrrr 762 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐶 ∈ Cat)
428, 33, 37, 41, 31catidcl 16166 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
43 simpr 476 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
441, 28, 29, 30, 8, 9, 31, 32, 33, 34, 31, 36, 42, 43uncf2 16700 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔) = ((((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))‘𝑧)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑥))‘𝑧))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔)))
45 eqid 2610 . . . . . . . . . . . . . . . . . 18 (Id‘(𝐷 FuncCat 𝐸)) = (Id‘(𝐷 FuncCat 𝐸))
4620ad3antrrr 762 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
478, 37, 45, 46, 31funcid 16353 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘(𝐷 FuncCat 𝐸))‘((1st𝐺)‘𝑥)))
48 eqid 2610 . . . . . . . . . . . . . . . . . 18 (Id‘𝐸) = (Id‘𝐸)
4922ad2antrr 758 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸))
5016, 45, 48, 49fucid 16454 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘(𝐷 FuncCat 𝐸))‘((1st𝐺)‘𝑥)) = ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))))
5147, 50eqtrd 2644 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥))))
5251fveq1d 6105 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))‘𝑧) = (((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥)))‘𝑧))
5325ad2antrr 758 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸))
54 fvco3 6185 . . . . . . . . . . . . . . . 16 (((1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸) ∧ 𝑧 ∈ (Base‘𝐷)) → (((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥)))‘𝑧) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧)))
5553, 36, 54syl2anc 691 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐸) ∘ (1st ‘((1st𝐺)‘𝑥)))‘𝑧) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧)))
5652, 55eqtrd 2644 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))‘𝑧) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧)))
5756oveq1d 6564 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((((𝑥(2nd𝐺)𝑥)‘((Id‘𝐶)‘𝑥))‘𝑧)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑥))‘𝑧))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔)) = (((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧))(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑥))‘𝑧))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔)))
58 eqid 2610 . . . . . . . . . . . . . 14 (Hom ‘𝐸) = (Hom ‘𝐸)
5953, 32ffvelrnd 6268 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑦) ∈ (Base‘𝐸))
60 eqid 2610 . . . . . . . . . . . . . 14 (comp‘𝐸) = (comp‘𝐸)
6153, 36ffvelrnd 6268 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑧) ∈ (Base‘𝐸))
6224adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
63 simprl 790 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
649, 34, 58, 62, 63, 35funcf2 16351 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧):(𝑦(Hom ‘𝐷)𝑧)⟶(((1st ‘((1st𝐺)‘𝑥))‘𝑦)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑥))‘𝑧)))
6564ffvelrnda 6267 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔) ∈ (((1st ‘((1st𝐺)‘𝑥))‘𝑦)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑥))‘𝑧)))
6614, 58, 48, 29, 59, 60, 61, 65catlid 16167 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧))(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑦), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑥))‘𝑧))((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔)) = ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔))
6744, 57, 663eqtrd 2648 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔) = ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔))
6867mpteq2dva 4672 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔)))
6964feqmptd 6159 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ ((𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)‘𝑔)))
7068, 69eqtr4d 2647 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷))) → (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)) = (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧))
71703impb 1252 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)) = (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧))
7271mpt2eq3dva 6617 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)))
739, 24funcfn2 16352 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (2nd ‘((1st𝐺)‘𝑥)) Fn ((Base‘𝐷) × (Base‘𝐷)))
74 fnov 6666 . . . . . . . . 9 ((2nd ‘((1st𝐺)‘𝑥)) Fn ((Base‘𝐷) × (Base‘𝐷)) ↔ (2nd ‘((1st𝐺)‘𝑥)) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)))
7573, 74sylib 207 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (2nd ‘((1st𝐺)‘𝑥)) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑦(2nd ‘((1st𝐺)‘𝑥))𝑧)))
7672, 75eqtr4d 2647 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))) = (2nd ‘((1st𝐺)‘𝑥)))
7727, 76opeq12d 4348 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ = ⟨(1st ‘((1st𝐺)‘𝑥)), (2nd ‘((1st𝐺)‘𝑥))⟩)
78 1st2nd 7105 . . . . . . 7 ((Rel (𝐷 Func 𝐸) ∧ ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸)) → ((1st𝐺)‘𝑥) = ⟨(1st ‘((1st𝐺)‘𝑥)), (2nd ‘((1st𝐺)‘𝑥))⟩)
7915, 22, 78sylancr 694 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑥) = ⟨(1st ‘((1st𝐺)‘𝑥)), (2nd ‘((1st𝐺)‘𝑥))⟩)
8077, 79eqtr4d 2647 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ = ((1st𝐺)‘𝑥))
8180mpteq2dva 4672 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐺)‘𝑥)))
8221feqmptd 6159 . . . 4 (𝜑 → (1st𝐺) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st𝐺)‘𝑥)))
8381, 82eqtr4d 2647 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩) = (1st𝐺))
842ad3antrrr 762 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
854ad3antrrr 762 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐸 ∈ Cat)
866ad3antrrr 762 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸)))
87 simprl 790 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
8887ad2antrr 758 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶))
89 simpr 476 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑧 ∈ (Base‘𝐷))
90 simprr 792 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
9190ad2antrr 758 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐶))
92 simplr 788 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦))
93 eqid 2610 . . . . . . . . . . . . 13 (Id‘𝐷) = (Id‘𝐷)
949, 34, 93, 84, 89catidcl 16166 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((Id‘𝐷)‘𝑧) ∈ (𝑧(Hom ‘𝐷)𝑧))
951, 84, 85, 86, 8, 9, 88, 89, 33, 34, 91, 89, 92, 94uncf2 16700 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)) = ((((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑧), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑦))‘𝑧))((𝑧(2nd ‘((1st𝐺)‘𝑥))𝑧)‘((Id‘𝐷)‘𝑧))))
9622adantrr 749 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸))
9796adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st𝐺)‘𝑥) ∈ (𝐷 Func 𝐸))
9815, 97, 23sylancr 694 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
9998adantr 480 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (1st ‘((1st𝐺)‘𝑥))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑥)))
1009, 93, 48, 99, 89funcid 16353 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((𝑧(2nd ‘((1st𝐺)‘𝑥))𝑧)‘((Id‘𝐷)‘𝑧)) = ((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧)))
101100oveq2d 6565 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑧), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑦))‘𝑧))((𝑧(2nd ‘((1st𝐺)‘𝑥))𝑧)‘((Id‘𝐷)‘𝑧))) = ((((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑧), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑦))‘𝑧))((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧))))
1029, 14, 98funcf1 16349 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘((1st𝐺)‘𝑥)):(Base‘𝐷)⟶(Base‘𝐸))
103102ffvelrnda 6267 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑥))‘𝑧) ∈ (Base‘𝐸))
10421ffvelrnda 6267 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦 ∈ (Base‘𝐶)) → ((1st𝐺)‘𝑦) ∈ (𝐷 Func 𝐸))
105104adantrl 748 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐺)‘𝑦) ∈ (𝐷 Func 𝐸))
106105adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((1st𝐺)‘𝑦) ∈ (𝐷 Func 𝐸))
107 1st2ndbr 7108 . . . . . . . . . . . . . . 15 ((Rel (𝐷 Func 𝐸) ∧ ((1st𝐺)‘𝑦) ∈ (𝐷 Func 𝐸)) → (1st ‘((1st𝐺)‘𝑦))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑦)))
10815, 106, 107sylancr 694 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘((1st𝐺)‘𝑦))(𝐷 Func 𝐸)(2nd ‘((1st𝐺)‘𝑦)))
1099, 14, 108funcf1 16349 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘((1st𝐺)‘𝑦)):(Base‘𝐷)⟶(Base‘𝐸))
110109ffvelrnda 6267 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((1st ‘((1st𝐺)‘𝑦))‘𝑧) ∈ (Base‘𝐸))
111 eqid 2610 . . . . . . . . . . . . 13 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
11216, 111fuchom 16444 . . . . . . . . . . . . . . . 16 (𝐷 Nat 𝐸) = (Hom ‘(𝐷 FuncCat 𝐸))
11320ad3antrrr 762 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
1148, 33, 112, 113, 88, 91funcf2 16351 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
115114, 92ffvelrnd 6268 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) ∈ (((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
116111, 115nat1st2nd 16434 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) ∈ (⟨(1st ‘((1st𝐺)‘𝑥)), (2nd ‘((1st𝐺)‘𝑥))⟩(𝐷 Nat 𝐸)⟨(1st ‘((1st𝐺)‘𝑦)), (2nd ‘((1st𝐺)‘𝑦))⟩))
117111, 116, 9, 58, 89natcl 16436 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧) ∈ (((1st ‘((1st𝐺)‘𝑥))‘𝑧)(Hom ‘𝐸)((1st ‘((1st𝐺)‘𝑦))‘𝑧)))
11814, 58, 48, 85, 103, 60, 110, 117catrid 16168 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)(⟨((1st ‘((1st𝐺)‘𝑥))‘𝑧), ((1st ‘((1st𝐺)‘𝑥))‘𝑧)⟩(comp‘𝐸)((1st ‘((1st𝐺)‘𝑦))‘𝑧))((Id‘𝐸)‘((1st ‘((1st𝐺)‘𝑥))‘𝑧))) = (((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧))
11995, 101, 1183eqtrd 2648 . . . . . . . . . 10 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)) = (((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧))
120119mpteq2dva 4672 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = (𝑧 ∈ (Base‘𝐷) ↦ (((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)))
12120adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐺)(𝐶 Func (𝐷 FuncCat 𝐸))(2nd𝐺))
1228, 33, 112, 121, 87, 90funcf2 16351 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
123122ffvelrnda 6267 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) ∈ (((1st𝐺)‘𝑥)(𝐷 Nat 𝐸)((1st𝐺)‘𝑦)))
124111, 123nat1st2nd 16434 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) ∈ (⟨(1st ‘((1st𝐺)‘𝑥)), (2nd ‘((1st𝐺)‘𝑥))⟩(𝐷 Nat 𝐸)⟨(1st ‘((1st𝐺)‘𝑦)), (2nd ‘((1st𝐺)‘𝑦))⟩))
125111, 124, 9natfn 16437 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) Fn (Base‘𝐷))
126 dffn5 6151 . . . . . . . . . 10 (((𝑥(2nd𝐺)𝑦)‘𝑔) Fn (Base‘𝐷) ↔ ((𝑥(2nd𝐺)𝑦)‘𝑔) = (𝑧 ∈ (Base‘𝐷) ↦ (((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)))
127125, 126sylib 207 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd𝐺)𝑦)‘𝑔) = (𝑧 ∈ (Base‘𝐷) ↦ (((𝑥(2nd𝐺)𝑦)‘𝑔)‘𝑧)))
128120, 127eqtr4d 2647 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = ((𝑥(2nd𝐺)𝑦)‘𝑔))
129128mpteq2dva 4672 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐺)𝑦)‘𝑔)))
130122feqmptd 6159 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐺)𝑦) = (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd𝐺)𝑦)‘𝑔)))
131129, 130eqtr4d 2647 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))) = (𝑥(2nd𝐺)𝑦))
1321313impb 1252 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))) = (𝑥(2nd𝐺)𝑦))
133132mpt2eq3dva 6617 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐺)𝑦)))
1348, 20funcfn2 16352 . . . . 5 (𝜑 → (2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)))
135 fnov 6666 . . . . 5 ((2nd𝐺) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐺)𝑦)))
136134, 135sylib 207 . . . 4 (𝜑 → (2nd𝐺) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd𝐺)𝑦)))
137133, 136eqtr4d 2647 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))) = (2nd𝐺))
13883, 137opeq12d 4348 . 2 (𝜑 → ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩ = ⟨(1st𝐺), (2nd𝐺)⟩)
139 eqid 2610 . . 3 (⟨𝐶, 𝐷⟩ curryF 𝐹) = (⟨𝐶, 𝐷⟩ curryF 𝐹)
1401, 2, 4, 6uncfcl 16698 . . 3 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
141139, 8, 40, 2, 140, 9, 34, 37, 33, 93curfval 16686 . 2 (𝜑 → (⟨𝐶, 𝐷⟩ curryF 𝐹) = ⟨(𝑥 ∈ (Base‘𝐶) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
142 1st2nd 7105 . . 3 ((Rel (𝐶 Func (𝐷 FuncCat 𝐸)) ∧ 𝐺 ∈ (𝐶 Func (𝐷 FuncCat 𝐸))) → 𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
14318, 6, 142sylancr 694 . 2 (𝜑𝐺 = ⟨(1st𝐺), (2nd𝐺)⟩)
144138, 141, 1433eqtr4d 2654 1 (𝜑 → (⟨𝐶, 𝐷⟩ curryF 𝐹) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  cop 4131   class class class wbr 4583  cmpt 4643   × cxp 5036  ccom 5042  Rel wrel 5043   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  ⟨“cs3 13438  Basecbs 15695  Hom chom 15779  compcco 15780  Catccat 16148  Idccid 16149   Func cfunc 16337   Nat cnat 16424   FuncCat cfuc 16425   curryF ccurf 16673   uncurryF cuncf 16674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-hom 15793  df-cco 15794  df-cat 16152  df-cid 16153  df-func 16341  df-cofu 16343  df-nat 16426  df-fuc 16427  df-xpc 16635  df-1stf 16636  df-2ndf 16637  df-prf 16638  df-evlf 16676  df-curf 16677  df-uncf 16678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator