Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mrcsncl | Structured version Visualization version GIF version |
Description: The Moore closure of a singleton is a closed set. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
Ref | Expression |
---|---|
mrcfval.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
mrcsncl | ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝑋) → (𝐹‘{𝑈}) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4280 | . 2 ⊢ (𝑈 ∈ 𝑋 → {𝑈} ⊆ 𝑋) | |
2 | mrcfval.f | . . 3 ⊢ 𝐹 = (mrCls‘𝐶) | |
3 | 2 | mrccl 16094 | . 2 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ {𝑈} ⊆ 𝑋) → (𝐹‘{𝑈}) ∈ 𝐶) |
4 | 1, 3 | sylan2 490 | 1 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈 ∈ 𝑋) → (𝐹‘{𝑈}) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ⊆ wss 3540 {csn 4125 ‘cfv 5804 Moorecmre 16065 mrClscmrc 16066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-int 4411 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-mre 16069 df-mrc 16070 |
This theorem is referenced by: pgpfac1lem1 18296 pgpfac1lem2 18297 pgpfac1lem3a 18298 pgpfac1lem3 18299 pgpfac1lem4 18300 pgpfac1lem5 18301 pgpfaclem1 18303 pgpfaclem2 18304 |
Copyright terms: Public domain | W3C validator |