Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > meadjuni | Structured version Visualization version GIF version |
Description: The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
meadjuni.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meadjuni.s | ⊢ 𝑆 = dom 𝑀 |
meadjuni.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
meadjuni.cnb | ⊢ (𝜑 → 𝑋 ≼ ω) |
meadjuni.dj | ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝑥) |
Ref | Expression |
---|---|
meadjuni | ⊢ (𝜑 → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meadjuni.cnb | . . 3 ⊢ (𝜑 → 𝑋 ≼ ω) | |
2 | meadjuni.dj | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝑥) | |
3 | 1, 2 | jca 553 | . 2 ⊢ (𝜑 → (𝑋 ≼ ω ∧ Disj 𝑥 ∈ 𝑋 𝑥)) |
4 | meadjuni.x | . . . . 5 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
5 | meadjuni.s | . . . . 5 ⊢ 𝑆 = dom 𝑀 | |
6 | 4, 5 | syl6sseq 3614 | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ dom 𝑀) |
7 | meadjuni.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
8 | 7, 5 | dmmeasal 39345 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
9 | 8, 4 | ssexd 4733 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ V) |
10 | elpwg 4116 | . . . . 5 ⊢ (𝑋 ∈ V → (𝑋 ∈ 𝒫 dom 𝑀 ↔ 𝑋 ⊆ dom 𝑀)) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝒫 dom 𝑀 ↔ 𝑋 ⊆ dom 𝑀)) |
12 | 6, 11 | mpbird 246 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝒫 dom 𝑀) |
13 | ismea 39344 | . . . . 5 ⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦))))) | |
14 | 7, 13 | sylib 207 | . . . 4 ⊢ (𝜑 → (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦))))) |
15 | 14 | simprd 478 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦)))) |
16 | breq1 4586 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝑦 ≼ ω ↔ 𝑋 ≼ ω)) | |
17 | disjeq1 4560 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (Disj 𝑥 ∈ 𝑦 𝑥 ↔ Disj 𝑥 ∈ 𝑋 𝑥)) | |
18 | 16, 17 | anbi12d 743 | . . . . 5 ⊢ (𝑦 = 𝑋 → ((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) ↔ (𝑋 ≼ ω ∧ Disj 𝑥 ∈ 𝑋 𝑥))) |
19 | unieq 4380 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → ∪ 𝑦 = ∪ 𝑋) | |
20 | 19 | fveq2d 6107 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝑀‘∪ 𝑦) = (𝑀‘∪ 𝑋)) |
21 | reseq2 5312 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → (𝑀 ↾ 𝑦) = (𝑀 ↾ 𝑋)) | |
22 | 21 | fveq2d 6107 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (Σ^‘(𝑀 ↾ 𝑦)) = (Σ^‘(𝑀 ↾ 𝑋))) |
23 | 20, 22 | eqeq12d 2625 | . . . . 5 ⊢ (𝑦 = 𝑋 → ((𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦)) ↔ (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋)))) |
24 | 18, 23 | imbi12d 333 | . . . 4 ⊢ (𝑦 = 𝑋 → (((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦))) ↔ ((𝑋 ≼ ω ∧ Disj 𝑥 ∈ 𝑋 𝑥) → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋))))) |
25 | 24 | rspcva 3280 | . . 3 ⊢ ((𝑋 ∈ 𝒫 dom 𝑀 ∧ ∀𝑦 ∈ 𝒫 dom 𝑀((𝑦 ≼ ω ∧ Disj 𝑥 ∈ 𝑦 𝑥) → (𝑀‘∪ 𝑦) = (Σ^‘(𝑀 ↾ 𝑦)))) → ((𝑋 ≼ ω ∧ Disj 𝑥 ∈ 𝑋 𝑥) → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋)))) |
26 | 12, 15, 25 | syl2anc 691 | . 2 ⊢ (𝜑 → ((𝑋 ≼ ω ∧ Disj 𝑥 ∈ 𝑋 𝑥) → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋)))) |
27 | 3, 26 | mpd 15 | 1 ⊢ (𝜑 → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 Vcvv 3173 ⊆ wss 3540 ∅c0 3874 𝒫 cpw 4108 ∪ cuni 4372 Disj wdisj 4553 class class class wbr 4583 dom cdm 5038 ↾ cres 5040 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ωcom 6957 ≼ cdom 7839 0cc0 9815 +∞cpnf 9950 [,]cicc 12049 SAlgcsalg 39204 Σ^csumge0 39255 Meascmea 39342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-disj 4554 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-mea 39343 |
This theorem is referenced by: meadjun 39355 meadjiun 39359 |
Copyright terms: Public domain | W3C validator |