Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mbfmf | Structured version Visualization version GIF version |
Description: A measurable function as a function with domain and codomain. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
Ref | Expression |
---|---|
mbfmf.1 | ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
mbfmf.2 | ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) |
mbfmf.3 | ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |
Ref | Expression |
---|---|
mbfmf | ⊢ (𝜑 → 𝐹:∪ 𝑆⟶∪ 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfmf.3 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) | |
2 | mbfmf.1 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) | |
3 | mbfmf.2 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ ∪ ran sigAlgebra) | |
4 | 2, 3 | ismbfm 29641 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑𝑚 ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆))) |
5 | 1, 4 | mpbid 221 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (∪ 𝑇 ↑𝑚 ∪ 𝑆) ∧ ∀𝑥 ∈ 𝑇 (◡𝐹 “ 𝑥) ∈ 𝑆)) |
6 | 5 | simpld 474 | . 2 ⊢ (𝜑 → 𝐹 ∈ (∪ 𝑇 ↑𝑚 ∪ 𝑆)) |
7 | elmapi 7765 | . 2 ⊢ (𝐹 ∈ (∪ 𝑇 ↑𝑚 ∪ 𝑆) → 𝐹:∪ 𝑆⟶∪ 𝑇) | |
8 | 6, 7 | syl 17 | 1 ⊢ (𝜑 → 𝐹:∪ 𝑆⟶∪ 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 1977 ∀wral 2896 ∪ cuni 4372 ◡ccnv 5037 ran crn 5039 “ cima 5041 ⟶wf 5800 (class class class)co 6549 ↑𝑚 cmap 7744 sigAlgebracsiga 29497 MblFnMcmbfm 29639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-map 7746 df-mbfm 29640 |
This theorem is referenced by: imambfm 29651 mbfmco 29653 mbfmco2 29654 mbfmvolf 29655 sibff 29725 sitgclg 29731 orvcval4 29849 |
Copyright terms: Public domain | W3C validator |