Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imambfm Structured version   Visualization version   GIF version

Theorem imambfm 29651
Description: If the sigma-algebra in the range of a given function is generated by a collection of basic sets 𝐾, then to check the measurability of that function, we need only consider inverse images of basic sets 𝑎. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Hypotheses
Ref Expression
imambfm.1 (𝜑𝐾 ∈ V)
imambfm.2 (𝜑𝑆 ran sigAlgebra)
imambfm.3 (𝜑𝑇 = (sigaGen‘𝐾))
Assertion
Ref Expression
imambfm (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)))
Distinct variable groups:   𝐹,𝑎   𝐾,𝑎   𝑆,𝑎   𝑇,𝑎   𝜑,𝑎

Proof of Theorem imambfm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imambfm.2 . . . . 5 (𝜑𝑆 ran sigAlgebra)
21adantr 480 . . . 4 ((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) → 𝑆 ran sigAlgebra)
3 imambfm.3 . . . . . 6 (𝜑𝑇 = (sigaGen‘𝐾))
4 imambfm.1 . . . . . . 7 (𝜑𝐾 ∈ V)
54sgsiga 29532 . . . . . 6 (𝜑 → (sigaGen‘𝐾) ∈ ran sigAlgebra)
63, 5eqeltrd 2688 . . . . 5 (𝜑𝑇 ran sigAlgebra)
76adantr 480 . . . 4 ((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) → 𝑇 ran sigAlgebra)
8 simpr 476 . . . 4 ((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) → 𝐹 ∈ (𝑆MblFnM𝑇))
92, 7, 8mbfmf 29644 . . 3 ((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) → 𝐹: 𝑆 𝑇)
101ad2antrr 758 . . . . 5 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → 𝑆 ran sigAlgebra)
116ad2antrr 758 . . . . 5 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → 𝑇 ran sigAlgebra)
12 simplr 788 . . . . 5 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → 𝐹 ∈ (𝑆MblFnM𝑇))
13 sssigagen 29535 . . . . . . . . 9 (𝐾 ∈ V → 𝐾 ⊆ (sigaGen‘𝐾))
144, 13syl 17 . . . . . . . 8 (𝜑𝐾 ⊆ (sigaGen‘𝐾))
1514, 3sseqtr4d 3605 . . . . . . 7 (𝜑𝐾𝑇)
1615ad2antrr 758 . . . . . 6 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → 𝐾𝑇)
17 simpr 476 . . . . . 6 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → 𝑎𝐾)
1816, 17sseldd 3569 . . . . 5 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → 𝑎𝑇)
1910, 11, 12, 18mbfmcnvima 29646 . . . 4 (((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎𝐾) → (𝐹𝑎) ∈ 𝑆)
2019ralrimiva 2949 . . 3 ((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) → ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)
219, 20jca 553 . 2 ((𝜑𝐹 ∈ (𝑆MblFnM𝑇)) → (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆))
22 unielsiga 29518 . . . . . 6 (𝑇 ran sigAlgebra → 𝑇𝑇)
236, 22syl 17 . . . . 5 (𝜑 𝑇𝑇)
2423adantr 480 . . . 4 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑇𝑇)
25 unielsiga 29518 . . . . . 6 (𝑆 ran sigAlgebra → 𝑆𝑆)
261, 25syl 17 . . . . 5 (𝜑 𝑆𝑆)
2726adantr 480 . . . 4 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑆𝑆)
28 simprl 790 . . . 4 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝐹: 𝑆 𝑇)
29 elmapg 7757 . . . . 5 (( 𝑇𝑇 𝑆𝑆) → (𝐹 ∈ ( 𝑇𝑚 𝑆) ↔ 𝐹: 𝑆 𝑇))
3029biimpar 501 . . . 4 ((( 𝑇𝑇 𝑆𝑆) ∧ 𝐹: 𝑆 𝑇) → 𝐹 ∈ ( 𝑇𝑚 𝑆))
3124, 27, 28, 30syl21anc 1317 . . 3 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝐹 ∈ ( 𝑇𝑚 𝑆))
323adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑇 = (sigaGen‘𝐾))
33 simpl 472 . . . . . . . . 9 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝜑)
34 ssrab2 3650 . . . . . . . . . . 11 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝑇
35 pwuni 4825 . . . . . . . . . . 11 𝑇 ⊆ 𝒫 𝑇
3634, 35sstri 3577 . . . . . . . . . 10 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇
3736a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇)
38 fimacnv 6255 . . . . . . . . . . . . 13 (𝐹: 𝑆 𝑇 → (𝐹 𝑇) = 𝑆)
3938ad2antrl 760 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → (𝐹 𝑇) = 𝑆)
4039, 27eqeltrd 2688 . . . . . . . . . . 11 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → (𝐹 𝑇) ∈ 𝑆)
41 imaeq2 5381 . . . . . . . . . . . . 13 (𝑎 = 𝑇 → (𝐹𝑎) = (𝐹 𝑇))
4241eleq1d 2672 . . . . . . . . . . . 12 (𝑎 = 𝑇 → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹 𝑇) ∈ 𝑆))
4342elrab 3331 . . . . . . . . . . 11 ( 𝑇 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ ( 𝑇𝑇 ∧ (𝐹 𝑇) ∈ 𝑆))
4424, 40, 43sylanbrc 695 . . . . . . . . . 10 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑇 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
456ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝑇 ran sigAlgebra)
4645, 22syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝑇𝑇)
47 elrabi 3328 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} → 𝑥𝑇)
4847adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝑥𝑇)
49 difelsiga 29523 . . . . . . . . . . . . 13 ((𝑇 ran sigAlgebra ∧ 𝑇𝑇𝑥𝑇) → ( 𝑇𝑥) ∈ 𝑇)
5045, 46, 48, 49syl3anc 1318 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → ( 𝑇𝑥) ∈ 𝑇)
51 simplrl 796 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝐹: 𝑆 𝑇)
52 ffun 5961 . . . . . . . . . . . . . 14 (𝐹: 𝑆 𝑇 → Fun 𝐹)
53 difpreima 6251 . . . . . . . . . . . . . 14 (Fun 𝐹 → (𝐹 “ ( 𝑇𝑥)) = ((𝐹 𝑇) ∖ (𝐹𝑥)))
5451, 52, 533syl 18 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → (𝐹 “ ( 𝑇𝑥)) = ((𝐹 𝑇) ∖ (𝐹𝑥)))
5539difeq1d 3689 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ((𝐹 𝑇) ∖ (𝐹𝑥)) = ( 𝑆 ∖ (𝐹𝑥)))
5655adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → ((𝐹 𝑇) ∖ (𝐹𝑥)) = ( 𝑆 ∖ (𝐹𝑥)))
571ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝑆 ran sigAlgebra)
5857, 25syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝑆𝑆)
59 imaeq2 5381 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑥 → (𝐹𝑎) = (𝐹𝑥))
6059eleq1d 2672 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑥 → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹𝑥) ∈ 𝑆))
6160elrab 3331 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ (𝑥𝑇 ∧ (𝐹𝑥) ∈ 𝑆))
6261simprbi 479 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} → (𝐹𝑥) ∈ 𝑆)
6362adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → (𝐹𝑥) ∈ 𝑆)
64 difelsiga 29523 . . . . . . . . . . . . . . 15 ((𝑆 ran sigAlgebra ∧ 𝑆𝑆 ∧ (𝐹𝑥) ∈ 𝑆) → ( 𝑆 ∖ (𝐹𝑥)) ∈ 𝑆)
6557, 58, 63, 64syl3anc 1318 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → ( 𝑆 ∖ (𝐹𝑥)) ∈ 𝑆)
6656, 65eqeltrd 2688 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → ((𝐹 𝑇) ∖ (𝐹𝑥)) ∈ 𝑆)
6754, 66eqeltrd 2688 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → (𝐹 “ ( 𝑇𝑥)) ∈ 𝑆)
68 imaeq2 5381 . . . . . . . . . . . . . 14 (𝑎 = ( 𝑇𝑥) → (𝐹𝑎) = (𝐹 “ ( 𝑇𝑥)))
6968eleq1d 2672 . . . . . . . . . . . . 13 (𝑎 = ( 𝑇𝑥) → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹 “ ( 𝑇𝑥)) ∈ 𝑆))
7069elrab 3331 . . . . . . . . . . . 12 (( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ (( 𝑇𝑥) ∈ 𝑇 ∧ (𝐹 “ ( 𝑇𝑥)) ∈ 𝑆))
7150, 67, 70sylanbrc 695 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → ( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
7271ralrimiva 2949 . . . . . . . . . 10 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ∀𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
736ad3antrrr 762 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑇 ran sigAlgebra)
74 sspwb 4844 . . . . . . . . . . . . . . . . 17 ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝑇 ↔ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇)
7534, 74mpbi 219 . . . . . . . . . . . . . . . 16 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇
7675sseli 3564 . . . . . . . . . . . . . . 15 (𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} → 𝑥 ∈ 𝒫 𝑇)
7776ad2antlr 759 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑥 ∈ 𝒫 𝑇)
78 simpr 476 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑥 ≼ ω)
79 sigaclcu 29507 . . . . . . . . . . . . . 14 ((𝑇 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑇𝑥 ≼ ω) → 𝑥𝑇)
8073, 77, 78, 79syl3anc 1318 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑥𝑇)
81 simpllr 795 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆))
8281simpld 474 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝐹: 𝑆 𝑇)
83 unipreima 28826 . . . . . . . . . . . . . . 15 (Fun 𝐹 → (𝐹 𝑥) = 𝑦𝑥 (𝐹𝑦))
8482, 52, 833syl 18 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → (𝐹 𝑥) = 𝑦𝑥 (𝐹𝑦))
851ad3antrrr 762 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑆 ran sigAlgebra)
86 simpr 476 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) ∧ 𝑦𝑥) → 𝑦𝑥)
87 simpllr 795 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) ∧ 𝑦𝑥) → 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
88 elelpwi 4119 . . . . . . . . . . . . . . . . . 18 ((𝑦𝑥𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → 𝑦 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
8986, 87, 88syl2anc 691 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) ∧ 𝑦𝑥) → 𝑦 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
90 imaeq2 5381 . . . . . . . . . . . . . . . . . . . 20 (𝑎 = 𝑦 → (𝐹𝑎) = (𝐹𝑦))
9190eleq1d 2672 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑦 → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹𝑦) ∈ 𝑆))
9291elrab 3331 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ (𝑦𝑇 ∧ (𝐹𝑦) ∈ 𝑆))
9392simprbi 479 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} → (𝐹𝑦) ∈ 𝑆)
9489, 93syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ 𝑆)
9594ralrimiva 2949 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → ∀𝑦𝑥 (𝐹𝑦) ∈ 𝑆)
96 nfcv 2751 . . . . . . . . . . . . . . . 16 𝑦𝑥
9796sigaclcuni 29508 . . . . . . . . . . . . . . 15 ((𝑆 ran sigAlgebra ∧ ∀𝑦𝑥 (𝐹𝑦) ∈ 𝑆𝑥 ≼ ω) → 𝑦𝑥 (𝐹𝑦) ∈ 𝑆)
9885, 95, 78, 97syl3anc 1318 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑦𝑥 (𝐹𝑦) ∈ 𝑆)
9984, 98eqeltrd 2688 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → (𝐹 𝑥) ∈ 𝑆)
100 imaeq2 5381 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → (𝐹𝑎) = (𝐹 𝑥))
101100eleq1d 2672 . . . . . . . . . . . . . 14 (𝑎 = 𝑥 → ((𝐹𝑎) ∈ 𝑆 ↔ (𝐹 𝑥) ∈ 𝑆))
102101elrab 3331 . . . . . . . . . . . . 13 ( 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ ( 𝑥𝑇 ∧ (𝐹 𝑥) ∈ 𝑆))
10380, 99, 102sylanbrc 695 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
104103ex 449 . . . . . . . . . . 11 (((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → (𝑥 ≼ ω → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}))
105104ralrimiva 2949 . . . . . . . . . 10 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ∀𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} (𝑥 ≼ ω → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}))
10644, 72, 1053jca 1235 . . . . . . . . 9 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ( 𝑇 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} (𝑥 ≼ ω → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})))
107 rabexg 4739 . . . . . . . . . . 11 (𝑇 ran sigAlgebra → {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ V)
108 issiga 29501 . . . . . . . . . . 11 ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ V → ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝑇) ↔ ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇 ∧ ( 𝑇 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} (𝑥 ≼ ω → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})))))
1096, 107, 1083syl 18 . . . . . . . . . 10 (𝜑 → ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝑇) ↔ ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇 ∧ ( 𝑇 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} (𝑥 ≼ ω → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})))))
110109biimpar 501 . . . . . . . . 9 ((𝜑 ∧ ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇 ∧ ( 𝑇 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ( 𝑇𝑥) ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ 𝒫 {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} (𝑥 ≼ ω → 𝑥 ∈ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})))) → {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝑇))
11133, 37, 106, 110syl12anc 1316 . . . . . . . 8 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝑇))
1123unieqd 4382 . . . . . . . . . . . 12 (𝜑 𝑇 = (sigaGen‘𝐾))
113 unisg 29533 . . . . . . . . . . . . 13 (𝐾 ∈ V → (sigaGen‘𝐾) = 𝐾)
1144, 113syl 17 . . . . . . . . . . . 12 (𝜑 (sigaGen‘𝐾) = 𝐾)
115112, 114eqtrd 2644 . . . . . . . . . . 11 (𝜑 𝑇 = 𝐾)
116115fveq2d 6107 . . . . . . . . . 10 (𝜑 → (sigAlgebra‘ 𝑇) = (sigAlgebra‘ 𝐾))
117116eleq2d 2673 . . . . . . . . 9 (𝜑 → ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝑇) ↔ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝐾)))
118117adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝑇) ↔ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝐾)))
119111, 118mpbid 221 . . . . . . 7 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝐾))
12015adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝐾𝑇)
121 simprr 792 . . . . . . . 8 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)
122 ssrab 3643 . . . . . . . 8 (𝐾 ⊆ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ (𝐾𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆))
123120, 121, 122sylanbrc 695 . . . . . . 7 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝐾 ⊆ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
124 sigagenss 29539 . . . . . . 7 (({𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ∈ (sigAlgebra‘ 𝐾) ∧ 𝐾 ⊆ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆}) → (sigaGen‘𝐾) ⊆ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
125119, 123, 124syl2anc 691 . . . . . 6 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → (sigaGen‘𝐾) ⊆ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
12632, 125eqsstrd 3602 . . . . 5 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑇 ⊆ {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
12734a1i 11 . . . . 5 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ⊆ 𝑇)
128126, 127eqssd 3585 . . . 4 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑇 = {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆})
129 rabid2 3096 . . . 4 (𝑇 = {𝑎𝑇 ∣ (𝐹𝑎) ∈ 𝑆} ↔ ∀𝑎𝑇 (𝐹𝑎) ∈ 𝑆)
130128, 129sylib 207 . . 3 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → ∀𝑎𝑇 (𝐹𝑎) ∈ 𝑆)
1311adantr 480 . . . 4 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑆 ran sigAlgebra)
1326adantr 480 . . . 4 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝑇 ran sigAlgebra)
133131, 132ismbfm 29641 . . 3 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇𝑚 𝑆) ∧ ∀𝑎𝑇 (𝐹𝑎) ∈ 𝑆)))
13431, 130, 133mpbir2and 959 . 2 ((𝜑 ∧ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)) → 𝐹 ∈ (𝑆MblFnM𝑇))
13521, 134impbida 873 1 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  𝒫 cpw 4108   cuni 4372   ciun 4455   class class class wbr 4583  ccnv 5037  ran crn 5039  cima 5041  Fun wfun 5798  wf 5800  cfv 5804  (class class class)co 6549  ωcom 6957  𝑚 cmap 7744  cdom 7839  sigAlgebracsiga 29497  sigaGencsigagen 29528  MblFnMcmbfm 29639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-ac2 9168
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-card 8648  df-acn 8651  df-ac 8822  df-cda 8873  df-siga 29498  df-sigagen 29529  df-mbfm 29640
This theorem is referenced by:  cnmbfm  29652  mbfmco2  29654
  Copyright terms: Public domain W3C validator