Step | Hyp | Ref
| Expression |
1 | | imambfm.2 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ ∪ ran
sigAlgebra) |
2 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑆MblFnM𝑇)) → 𝑆 ∈ ∪ ran
sigAlgebra) |
3 | | imambfm.3 |
. . . . . 6
⊢ (𝜑 → 𝑇 = (sigaGen‘𝐾)) |
4 | | imambfm.1 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ V) |
5 | 4 | sgsiga 29532 |
. . . . . 6
⊢ (𝜑 → (sigaGen‘𝐾) ∈ ∪ ran sigAlgebra) |
6 | 3, 5 | eqeltrd 2688 |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ ∪ ran
sigAlgebra) |
7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑆MblFnM𝑇)) → 𝑇 ∈ ∪ ran
sigAlgebra) |
8 | | simpr 476 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑆MblFnM𝑇)) → 𝐹 ∈ (𝑆MblFnM𝑇)) |
9 | 2, 7, 8 | mbfmf 29644 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑆MblFnM𝑇)) → 𝐹:∪ 𝑆⟶∪ 𝑇) |
10 | 1 | ad2antrr 758 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎 ∈ 𝐾) → 𝑆 ∈ ∪ ran
sigAlgebra) |
11 | 6 | ad2antrr 758 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎 ∈ 𝐾) → 𝑇 ∈ ∪ ran
sigAlgebra) |
12 | | simplr 788 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎 ∈ 𝐾) → 𝐹 ∈ (𝑆MblFnM𝑇)) |
13 | | sssigagen 29535 |
. . . . . . . . 9
⊢ (𝐾 ∈ V → 𝐾 ⊆ (sigaGen‘𝐾)) |
14 | 4, 13 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ⊆ (sigaGen‘𝐾)) |
15 | 14, 3 | sseqtr4d 3605 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ⊆ 𝑇) |
16 | 15 | ad2antrr 758 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎 ∈ 𝐾) → 𝐾 ⊆ 𝑇) |
17 | | simpr 476 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎 ∈ 𝐾) → 𝑎 ∈ 𝐾) |
18 | 16, 17 | sseldd 3569 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎 ∈ 𝐾) → 𝑎 ∈ 𝑇) |
19 | 10, 11, 12, 18 | mbfmcnvima 29646 |
. . . 4
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑆MblFnM𝑇)) ∧ 𝑎 ∈ 𝐾) → (◡𝐹 “ 𝑎) ∈ 𝑆) |
20 | 19 | ralrimiva 2949 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑆MblFnM𝑇)) → ∀𝑎 ∈ 𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆) |
21 | 9, 20 | jca 553 |
. 2
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑆MblFnM𝑇)) → (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) |
22 | | unielsiga 29518 |
. . . . . 6
⊢ (𝑇 ∈ ∪ ran sigAlgebra → ∪ 𝑇 ∈ 𝑇) |
23 | 6, 22 | syl 17 |
. . . . 5
⊢ (𝜑 → ∪ 𝑇
∈ 𝑇) |
24 | 23 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → ∪ 𝑇 ∈ 𝑇) |
25 | | unielsiga 29518 |
. . . . . 6
⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∪ 𝑆 ∈ 𝑆) |
26 | 1, 25 | syl 17 |
. . . . 5
⊢ (𝜑 → ∪ 𝑆
∈ 𝑆) |
27 | 26 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → ∪ 𝑆 ∈ 𝑆) |
28 | | simprl 790 |
. . . 4
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → 𝐹:∪ 𝑆⟶∪ 𝑇) |
29 | | elmapg 7757 |
. . . . 5
⊢ ((∪ 𝑇
∈ 𝑇 ∧ ∪ 𝑆
∈ 𝑆) → (𝐹 ∈ (∪ 𝑇
↑𝑚 ∪ 𝑆) ↔ 𝐹:∪ 𝑆⟶∪ 𝑇)) |
30 | 29 | biimpar 501 |
. . . 4
⊢ (((∪ 𝑇
∈ 𝑇 ∧ ∪ 𝑆
∈ 𝑆) ∧ 𝐹:∪
𝑆⟶∪ 𝑇)
→ 𝐹 ∈ (∪ 𝑇
↑𝑚 ∪ 𝑆)) |
31 | 24, 27, 28, 30 | syl21anc 1317 |
. . 3
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → 𝐹 ∈ (∪ 𝑇 ↑𝑚
∪ 𝑆)) |
32 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → 𝑇 = (sigaGen‘𝐾)) |
33 | | simpl 472 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → 𝜑) |
34 | | ssrab2 3650 |
. . . . . . . . . . 11
⊢ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ⊆ 𝑇 |
35 | | pwuni 4825 |
. . . . . . . . . . 11
⊢ 𝑇 ⊆ 𝒫 ∪ 𝑇 |
36 | 34, 35 | sstri 3577 |
. . . . . . . . . 10
⊢ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ⊆ 𝒫 ∪ 𝑇 |
37 | 36 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ⊆ 𝒫 ∪ 𝑇) |
38 | | fimacnv 6255 |
. . . . . . . . . . . . 13
⊢ (𝐹:∪
𝑆⟶∪ 𝑇
→ (◡𝐹 “ ∪ 𝑇) = ∪
𝑆) |
39 | 38 | ad2antrl 760 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → (◡𝐹 “ ∪ 𝑇) = ∪
𝑆) |
40 | 39, 27 | eqeltrd 2688 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → (◡𝐹 “ ∪ 𝑇) ∈ 𝑆) |
41 | | imaeq2 5381 |
. . . . . . . . . . . . 13
⊢ (𝑎 = ∪
𝑇 → (◡𝐹 “ 𝑎) = (◡𝐹 “ ∪ 𝑇)) |
42 | 41 | eleq1d 2672 |
. . . . . . . . . . . 12
⊢ (𝑎 = ∪
𝑇 → ((◡𝐹 “ 𝑎) ∈ 𝑆 ↔ (◡𝐹 “ ∪ 𝑇) ∈ 𝑆)) |
43 | 42 | elrab 3331 |
. . . . . . . . . . 11
⊢ (∪ 𝑇
∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ↔ (∪ 𝑇 ∈ 𝑇 ∧ (◡𝐹 “ ∪ 𝑇) ∈ 𝑆)) |
44 | 24, 40, 43 | sylanbrc 695 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → ∪ 𝑇 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) |
45 | 6 | ad2antrr 758 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) → 𝑇 ∈ ∪ ran
sigAlgebra) |
46 | 45, 22 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) → ∪ 𝑇 ∈ 𝑇) |
47 | | elrabi 3328 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} → 𝑥 ∈ 𝑇) |
48 | 47 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) → 𝑥 ∈ 𝑇) |
49 | | difelsiga 29523 |
. . . . . . . . . . . . 13
⊢ ((𝑇 ∈ ∪ ran sigAlgebra ∧ ∪ 𝑇 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇) → (∪ 𝑇 ∖ 𝑥) ∈ 𝑇) |
50 | 45, 46, 48, 49 | syl3anc 1318 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) → (∪
𝑇 ∖ 𝑥) ∈ 𝑇) |
51 | | simplrl 796 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) → 𝐹:∪ 𝑆⟶∪ 𝑇) |
52 | | ffun 5961 |
. . . . . . . . . . . . . 14
⊢ (𝐹:∪
𝑆⟶∪ 𝑇
→ Fun 𝐹) |
53 | | difpreima 6251 |
. . . . . . . . . . . . . 14
⊢ (Fun
𝐹 → (◡𝐹 “ (∪ 𝑇 ∖ 𝑥)) = ((◡𝐹 “ ∪ 𝑇) ∖ (◡𝐹 “ 𝑥))) |
54 | 51, 52, 53 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) → (◡𝐹 “ (∪ 𝑇 ∖ 𝑥)) = ((◡𝐹 “ ∪ 𝑇) ∖ (◡𝐹 “ 𝑥))) |
55 | 39 | difeq1d 3689 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → ((◡𝐹 “ ∪ 𝑇) ∖ (◡𝐹 “ 𝑥)) = (∪ 𝑆 ∖ (◡𝐹 “ 𝑥))) |
56 | 55 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) → ((◡𝐹 “ ∪ 𝑇) ∖ (◡𝐹 “ 𝑥)) = (∪ 𝑆 ∖ (◡𝐹 “ 𝑥))) |
57 | 1 | ad2antrr 758 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) → 𝑆 ∈ ∪ ran
sigAlgebra) |
58 | 57, 25 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) → ∪ 𝑆 ∈ 𝑆) |
59 | | imaeq2 5381 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑥 → (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑥)) |
60 | 59 | eleq1d 2672 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑥 → ((◡𝐹 “ 𝑎) ∈ 𝑆 ↔ (◡𝐹 “ 𝑥) ∈ 𝑆)) |
61 | 60 | elrab 3331 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ↔ (𝑥 ∈ 𝑇 ∧ (◡𝐹 “ 𝑥) ∈ 𝑆)) |
62 | 61 | simprbi 479 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} → (◡𝐹 “ 𝑥) ∈ 𝑆) |
63 | 62 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) → (◡𝐹 “ 𝑥) ∈ 𝑆) |
64 | | difelsiga 29523 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∪ 𝑆 ∈ 𝑆 ∧ (◡𝐹 “ 𝑥) ∈ 𝑆) → (∪ 𝑆 ∖ (◡𝐹 “ 𝑥)) ∈ 𝑆) |
65 | 57, 58, 63, 64 | syl3anc 1318 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) → (∪
𝑆 ∖ (◡𝐹 “ 𝑥)) ∈ 𝑆) |
66 | 56, 65 | eqeltrd 2688 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) → ((◡𝐹 “ ∪ 𝑇) ∖ (◡𝐹 “ 𝑥)) ∈ 𝑆) |
67 | 54, 66 | eqeltrd 2688 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) → (◡𝐹 “ (∪ 𝑇 ∖ 𝑥)) ∈ 𝑆) |
68 | | imaeq2 5381 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (∪
𝑇 ∖ 𝑥) → (◡𝐹 “ 𝑎) = (◡𝐹 “ (∪ 𝑇 ∖ 𝑥))) |
69 | 68 | eleq1d 2672 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (∪
𝑇 ∖ 𝑥) → ((◡𝐹 “ 𝑎) ∈ 𝑆 ↔ (◡𝐹 “ (∪ 𝑇 ∖ 𝑥)) ∈ 𝑆)) |
70 | 69 | elrab 3331 |
. . . . . . . . . . . 12
⊢ ((∪ 𝑇
∖ 𝑥) ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ↔ ((∪
𝑇 ∖ 𝑥) ∈ 𝑇 ∧ (◡𝐹 “ (∪ 𝑇 ∖ 𝑥)) ∈ 𝑆)) |
71 | 50, 67, 70 | sylanbrc 695 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) → (∪
𝑇 ∖ 𝑥) ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) |
72 | 71 | ralrimiva 2949 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → ∀𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} (∪ 𝑇 ∖ 𝑥) ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) |
73 | 6 | ad3antrrr 762 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑇 ∈ ∪ ran
sigAlgebra) |
74 | | sspwb 4844 |
. . . . . . . . . . . . . . . . 17
⊢ ({𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ⊆ 𝑇 ↔ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇) |
75 | 34, 74 | mpbi 219 |
. . . . . . . . . . . . . . . 16
⊢ 𝒫
{𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ⊆ 𝒫 𝑇 |
76 | 75 | sseli 3564 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} → 𝑥 ∈ 𝒫 𝑇) |
77 | 76 | ad2antlr 759 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑥 ∈ 𝒫 𝑇) |
78 | | simpr 476 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑥 ≼ ω) |
79 | | sigaclcu 29507 |
. . . . . . . . . . . . . 14
⊢ ((𝑇 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑇 ∧ 𝑥 ≼ ω) → ∪ 𝑥
∈ 𝑇) |
80 | 73, 77, 78, 79 | syl3anc 1318 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → ∪ 𝑥
∈ 𝑇) |
81 | | simpllr 795 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) |
82 | 81 | simpld 474 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝐹:∪ 𝑆⟶∪ 𝑇) |
83 | | unipreima 28826 |
. . . . . . . . . . . . . . 15
⊢ (Fun
𝐹 → (◡𝐹 “ ∪ 𝑥) = ∪ 𝑦 ∈ 𝑥 (◡𝐹 “ 𝑦)) |
84 | 82, 52, 83 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → (◡𝐹 “ ∪ 𝑥) = ∪ 𝑦 ∈ 𝑥 (◡𝐹 “ 𝑦)) |
85 | 1 | ad3antrrr 762 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → 𝑆 ∈ ∪ ran
sigAlgebra) |
86 | | simpr 476 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (𝐹:∪
𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) |
87 | | simpllr 795 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (𝐹:∪
𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) |
88 | | elelpwi 4119 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) → 𝑦 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) |
89 | 86, 87, 88 | syl2anc 691 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (𝐹:∪
𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) |
90 | | imaeq2 5381 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑦 → (◡𝐹 “ 𝑎) = (◡𝐹 “ 𝑦)) |
91 | 90 | eleq1d 2672 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑦 → ((◡𝐹 “ 𝑎) ∈ 𝑆 ↔ (◡𝐹 “ 𝑦) ∈ 𝑆)) |
92 | 91 | elrab 3331 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ↔ (𝑦 ∈ 𝑇 ∧ (◡𝐹 “ 𝑦) ∈ 𝑆)) |
93 | 92 | simprbi 479 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} → (◡𝐹 “ 𝑦) ∈ 𝑆) |
94 | 89, 93 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (𝐹:∪
𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) ∧ 𝑦 ∈ 𝑥) → (◡𝐹 “ 𝑦) ∈ 𝑆) |
95 | 94 | ralrimiva 2949 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → ∀𝑦 ∈ 𝑥 (◡𝐹 “ 𝑦) ∈ 𝑆) |
96 | | nfcv 2751 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑦𝑥 |
97 | 96 | sigaclcuni 29508 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ ∀𝑦 ∈ 𝑥 (◡𝐹 “ 𝑦) ∈ 𝑆 ∧ 𝑥 ≼ ω) → ∪ 𝑦 ∈ 𝑥 (◡𝐹 “ 𝑦) ∈ 𝑆) |
98 | 85, 95, 78, 97 | syl3anc 1318 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → ∪ 𝑦 ∈ 𝑥 (◡𝐹 “ 𝑦) ∈ 𝑆) |
99 | 84, 98 | eqeltrd 2688 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → (◡𝐹 “ ∪ 𝑥) ∈ 𝑆) |
100 | | imaeq2 5381 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = ∪
𝑥 → (◡𝐹 “ 𝑎) = (◡𝐹 “ ∪ 𝑥)) |
101 | 100 | eleq1d 2672 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = ∪
𝑥 → ((◡𝐹 “ 𝑎) ∈ 𝑆 ↔ (◡𝐹 “ ∪ 𝑥) ∈ 𝑆)) |
102 | 101 | elrab 3331 |
. . . . . . . . . . . . 13
⊢ (∪ 𝑥
∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ↔ (∪ 𝑥 ∈ 𝑇 ∧ (◡𝐹 “ ∪ 𝑥) ∈ 𝑆)) |
103 | 80, 99, 102 | sylanbrc 695 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) ∧ 𝑥 ≼ ω) → ∪ 𝑥
∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) |
104 | 103 | ex 449 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) ∧ 𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) → (𝑥 ≼ ω → ∪ 𝑥
∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆})) |
105 | 104 | ralrimiva 2949 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → ∀𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} (𝑥 ≼ ω → ∪ 𝑥
∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆})) |
106 | 44, 72, 105 | 3jca 1235 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → (∪
𝑇 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} (∪ 𝑇 ∖ 𝑥) ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} (𝑥 ≼ ω → ∪ 𝑥
∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}))) |
107 | | rabexg 4739 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ ∪ ran sigAlgebra → {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∈ V) |
108 | | issiga 29501 |
. . . . . . . . . . 11
⊢ ({𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∈ V → ({𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∈ (sigAlgebra‘∪ 𝑇)
↔ ({𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ⊆ 𝒫 ∪ 𝑇
∧ (∪ 𝑇 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} (∪ 𝑇 ∖ 𝑥) ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} (𝑥 ≼ ω → ∪ 𝑥
∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}))))) |
109 | 6, 107, 108 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → ({𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∈ (sigAlgebra‘∪ 𝑇)
↔ ({𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ⊆ 𝒫 ∪ 𝑇
∧ (∪ 𝑇 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} (∪ 𝑇 ∖ 𝑥) ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} (𝑥 ≼ ω → ∪ 𝑥
∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}))))) |
110 | 109 | biimpar 501 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ({𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ⊆ 𝒫 ∪ 𝑇
∧ (∪ 𝑇 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} (∪ 𝑇 ∖ 𝑥) ∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∧ ∀𝑥 ∈ 𝒫 {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} (𝑥 ≼ ω → ∪ 𝑥
∈ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆})))) → {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∈ (sigAlgebra‘∪ 𝑇)) |
111 | 33, 37, 106, 110 | syl12anc 1316 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∈ (sigAlgebra‘∪ 𝑇)) |
112 | 3 | unieqd 4382 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ 𝑇 =
∪ (sigaGen‘𝐾)) |
113 | | unisg 29533 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ V → ∪ (sigaGen‘𝐾) = ∪ 𝐾) |
114 | 4, 113 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ (sigaGen‘𝐾) = ∪ 𝐾) |
115 | 112, 114 | eqtrd 2644 |
. . . . . . . . . . 11
⊢ (𝜑 → ∪ 𝑇 =
∪ 𝐾) |
116 | 115 | fveq2d 6107 |
. . . . . . . . . 10
⊢ (𝜑 → (sigAlgebra‘∪ 𝑇) =
(sigAlgebra‘∪ 𝐾)) |
117 | 116 | eleq2d 2673 |
. . . . . . . . 9
⊢ (𝜑 → ({𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∈ (sigAlgebra‘∪ 𝑇)
↔ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∈ (sigAlgebra‘∪ 𝐾))) |
118 | 117 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → ({𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∈ (sigAlgebra‘∪ 𝑇)
↔ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∈ (sigAlgebra‘∪ 𝐾))) |
119 | 111, 118 | mpbid 221 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∈ (sigAlgebra‘∪ 𝐾)) |
120 | 15 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → 𝐾 ⊆ 𝑇) |
121 | | simprr 792 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → ∀𝑎 ∈ 𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆) |
122 | | ssrab 3643 |
. . . . . . . 8
⊢ (𝐾 ⊆ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ↔ (𝐾 ⊆ 𝑇 ∧ ∀𝑎 ∈ 𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) |
123 | 120, 121,
122 | sylanbrc 695 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → 𝐾 ⊆ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) |
124 | | sigagenss 29539 |
. . . . . . 7
⊢ (({𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ∈ (sigAlgebra‘∪ 𝐾)
∧ 𝐾 ⊆ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) → (sigaGen‘𝐾) ⊆ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) |
125 | 119, 123,
124 | syl2anc 691 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → (sigaGen‘𝐾) ⊆ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) |
126 | 32, 125 | eqsstrd 3602 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → 𝑇 ⊆ {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) |
127 | 34 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ⊆ 𝑇) |
128 | 126, 127 | eqssd 3585 |
. . . 4
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → 𝑇 = {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆}) |
129 | | rabid2 3096 |
. . . 4
⊢ (𝑇 = {𝑎 ∈ 𝑇 ∣ (◡𝐹 “ 𝑎) ∈ 𝑆} ↔ ∀𝑎 ∈ 𝑇 (◡𝐹 “ 𝑎) ∈ 𝑆) |
130 | 128, 129 | sylib 207 |
. . 3
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → ∀𝑎 ∈ 𝑇 (◡𝐹 “ 𝑎) ∈ 𝑆) |
131 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → 𝑆 ∈ ∪ ran
sigAlgebra) |
132 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → 𝑇 ∈ ∪ ran
sigAlgebra) |
133 | 131, 132 | ismbfm 29641 |
. . 3
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑𝑚
∪ 𝑆) ∧ ∀𝑎 ∈ 𝑇 (◡𝐹 “ 𝑎) ∈ 𝑆))) |
134 | 31, 130, 133 | mpbir2and 959 |
. 2
⊢ ((𝜑 ∧ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆)) → 𝐹 ∈ (𝑆MblFnM𝑇)) |
135 | 21, 134 | impbida 873 |
1
⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹:∪ 𝑆⟶∪ 𝑇
∧ ∀𝑎 ∈
𝐾 (◡𝐹 “ 𝑎) ∈ 𝑆))) |