Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > kqf | Structured version Visualization version GIF version |
Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqf | ⊢ KQ:Top⟶Kol2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6577 | . . 3 ⊢ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦})) ∈ V | |
2 | df-kq 21307 | . . 3 ⊢ KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) | |
3 | 1, 2 | fnmpti 5935 | . 2 ⊢ KQ Fn Top |
4 | kqt0 21359 | . . . 4 ⊢ (𝑥 ∈ Top ↔ (KQ‘𝑥) ∈ Kol2) | |
5 | 4 | biimpi 205 | . . 3 ⊢ (𝑥 ∈ Top → (KQ‘𝑥) ∈ Kol2) |
6 | 5 | rgen 2906 | . 2 ⊢ ∀𝑥 ∈ Top (KQ‘𝑥) ∈ Kol2 |
7 | ffnfv 6295 | . 2 ⊢ (KQ:Top⟶Kol2 ↔ (KQ Fn Top ∧ ∀𝑥 ∈ Top (KQ‘𝑥) ∈ Kol2)) | |
8 | 3, 6, 7 | mpbir2an 957 | 1 ⊢ KQ:Top⟶Kol2 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1977 ∀wral 2896 {crab 2900 ∪ cuni 4372 ↦ cmpt 4643 Fn wfn 5799 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 qTop cqtop 15986 Topctop 20517 Kol2ct0 20920 KQckq 21306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-qtop 15990 df-top 20521 df-topon 20523 df-t0 20927 df-kq 21307 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |