Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpssmapg Structured version   Visualization version   GIF version

Theorem ixpssmapg 7824
 Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Jeff Madsen, 19-Jun-2011.)
Assertion
Ref Expression
ixpssmapg (∀𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpssmapg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 n0i 3879 . . . . . . 7 (𝑓X𝑥𝐴 𝐵 → ¬ X𝑥𝐴 𝐵 = ∅)
2 ixpprc 7815 . . . . . . 7 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
31, 2nsyl2 141 . . . . . 6 (𝑓X𝑥𝐴 𝐵𝐴 ∈ V)
4 id 22 . . . . . 6 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 𝐵𝑉)
5 iunexg 7035 . . . . . 6 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → 𝑥𝐴 𝐵 ∈ V)
63, 4, 5syl2anr 494 . . . . 5 ((∀𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 ∈ V)
7 ixpssmap2g 7823 . . . . 5 ( 𝑥𝐴 𝐵 ∈ V → X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
86, 7syl 17 . . . 4 ((∀𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
9 simpr 476 . . . 4 ((∀𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → 𝑓X𝑥𝐴 𝐵)
108, 9sseldd 3569 . . 3 ((∀𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → 𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 𝐴))
1110ex 449 . 2 (∀𝑥𝐴 𝐵𝑉 → (𝑓X𝑥𝐴 𝐵𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 𝐴)))
1211ssrdv 3574 1 (∀𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173   ⊆ wss 3540  ∅c0 3874  ∪ ciun 4455  (class class class)co 6549   ↑𝑚 cmap 7744  Xcixp 7794 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-ixp 7795 This theorem is referenced by:  ixpssmap  7828  gruixp  9510  hoissrrn  39439  hoissrrn2  39468
 Copyright terms: Public domain W3C validator