MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isuhgrop Structured version   Visualization version   GIF version

Theorem isuhgrop 25736
Description: The property of being an undirected hypergraph represented as an ordered pair. The representation as an ordered pair is the usual representation of a graph, see section I.1 of [Bollobas] p. 1. (Contributed by AV, 1-Jan-2020.) (Revised by AV, 9-Oct-2020.)
Assertion
Ref Expression
isuhgrop ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))

Proof of Theorem isuhgrop
StepHypRef Expression
1 opex 4859 . . 3 𝑉, 𝐸⟩ ∈ V
2 eqid 2610 . . . 4 (Vtx‘⟨𝑉, 𝐸⟩) = (Vtx‘⟨𝑉, 𝐸⟩)
3 eqid 2610 . . . 4 (iEdg‘⟨𝑉, 𝐸⟩) = (iEdg‘⟨𝑉, 𝐸⟩)
42, 3isuhgr 25726 . . 3 (⟨𝑉, 𝐸⟩ ∈ V → (⟨𝑉, 𝐸⟩ ∈ UHGraph ↔ (iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)⟶(𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅})))
51, 4mp1i 13 . 2 ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ UHGraph ↔ (iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)⟶(𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅})))
6 opiedgfv 25684 . . 3 ((𝑉𝑊𝐸𝑋) → (iEdg‘⟨𝑉, 𝐸⟩) = 𝐸)
76dmeqd 5248 . . 3 ((𝑉𝑊𝐸𝑋) → dom (iEdg‘⟨𝑉, 𝐸⟩) = dom 𝐸)
8 opvtxfv 25681 . . . . 5 ((𝑉𝑊𝐸𝑋) → (Vtx‘⟨𝑉, 𝐸⟩) = 𝑉)
98pweqd 4113 . . . 4 ((𝑉𝑊𝐸𝑋) → 𝒫 (Vtx‘⟨𝑉, 𝐸⟩) = 𝒫 𝑉)
109difeq1d 3689 . . 3 ((𝑉𝑊𝐸𝑋) → (𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) = (𝒫 𝑉 ∖ {∅}))
116, 7, 10feq123d 5947 . 2 ((𝑉𝑊𝐸𝑋) → ((iEdg‘⟨𝑉, 𝐸⟩):dom (iEdg‘⟨𝑉, 𝐸⟩)⟶(𝒫 (Vtx‘⟨𝑉, 𝐸⟩) ∖ {∅}) ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
125, 11bitrd 267 1 ((𝑉𝑊𝐸𝑋) → (⟨𝑉, 𝐸⟩ ∈ UHGraph ↔ 𝐸:dom 𝐸⟶(𝒫 𝑉 ∖ {∅})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wcel 1977  Vcvv 3173  cdif 3537  c0 3874  𝒫 cpw 4108  {csn 4125  cop 4131  dom cdm 5038  wf 5800  cfv 5804  Vtxcvtx 25673  iEdgciedg 25674   UHGraph cuhgr 25722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-1st 7059  df-2nd 7060  df-vtx 25675  df-iedg 25676  df-uhgr 25724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator