Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgr0e | Structured version Visualization version GIF version |
Description: The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) |
Ref | Expression |
---|---|
uhgr0e.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
uhgr0e.e | ⊢ (𝜑 → (iEdg‘𝐺) = ∅) |
Ref | Expression |
---|---|
uhgr0e | ⊢ (𝜑 → 𝐺 ∈ UHGraph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0 5999 | . . 3 ⊢ ∅:∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) | |
2 | dm0 5260 | . . . 4 ⊢ dom ∅ = ∅ | |
3 | 2 | feq2i 5950 | . . 3 ⊢ (∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | 1, 3 | mpbir 220 | . 2 ⊢ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) |
5 | uhgr0e.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
6 | eqid 2610 | . . . . 5 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
7 | eqid 2610 | . . . . 5 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
8 | 6, 7 | isuhgr 25726 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
9 | 5, 8 | syl 17 | . . 3 ⊢ (𝜑 → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
10 | uhgr0e.e | . . . 4 ⊢ (𝜑 → (iEdg‘𝐺) = ∅) | |
11 | id 22 | . . . . 5 ⊢ ((iEdg‘𝐺) = ∅ → (iEdg‘𝐺) = ∅) | |
12 | dmeq 5246 | . . . . 5 ⊢ ((iEdg‘𝐺) = ∅ → dom (iEdg‘𝐺) = dom ∅) | |
13 | 11, 12 | feq12d 5946 | . . . 4 ⊢ ((iEdg‘𝐺) = ∅ → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
14 | 10, 13 | syl 17 | . . 3 ⊢ (𝜑 → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
15 | 9, 14 | bitrd 267 | . 2 ⊢ (𝜑 → (𝐺 ∈ UHGraph ↔ ∅:dom ∅⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))) |
16 | 4, 15 | mpbiri 247 | 1 ⊢ (𝜑 → 𝐺 ∈ UHGraph ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 = wceq 1475 ∈ wcel 1977 ∖ cdif 3537 ∅c0 3874 𝒫 cpw 4108 {csn 4125 dom cdm 5038 ⟶wf 5800 ‘cfv 5804 Vtxcvtx 25673 iEdgciedg 25674 UHGraph cuhgr 25722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-fv 5812 df-uhgr 25724 |
This theorem is referenced by: uhgr0vb 25738 |
Copyright terms: Public domain | W3C validator |