Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > issmf | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
issmf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
issmf.d | ⊢ 𝐷 = dom 𝐹 |
Ref | Expression |
---|---|
issmf | ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
2 | issmf.d | . . 3 ⊢ 𝐷 = dom 𝐹 | |
3 | 1, 2 | issmflem 39613 | . 2 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} ∈ (𝑆 ↾t 𝐷)))) |
4 | breq2 4587 | . . . . . . . 8 ⊢ (𝑏 = 𝑎 → ((𝐹‘𝑦) < 𝑏 ↔ (𝐹‘𝑦) < 𝑎)) | |
5 | 4 | rabbidv 3164 | . . . . . . 7 ⊢ (𝑏 = 𝑎 → {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} = {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎}) |
6 | 5 | eleq1d 2672 | . . . . . 6 ⊢ (𝑏 = 𝑎 → ({𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} ∈ (𝑆 ↾t 𝐷) ↔ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
7 | fveq2 6103 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | |
8 | 7 | breq1d 4593 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) < 𝑎 ↔ (𝐹‘𝑥) < 𝑎)) |
9 | 8 | cbvrabv 3172 | . . . . . . . 8 ⊢ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} |
10 | 9 | eleq1i 2679 | . . . . . . 7 ⊢ ({𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} ∈ (𝑆 ↾t 𝐷) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) |
11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝑏 = 𝑎 → ({𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} ∈ (𝑆 ↾t 𝐷) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
12 | 6, 11 | bitrd 267 | . . . . 5 ⊢ (𝑏 = 𝑎 → ({𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} ∈ (𝑆 ↾t 𝐷) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
13 | 12 | cbvralv 3147 | . . . 4 ⊢ (∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} ∈ (𝑆 ↾t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) |
14 | 13 | 3anbi3i 1248 | . . 3 ⊢ ((𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} ∈ (𝑆 ↾t 𝐷)) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → ((𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} ∈ (𝑆 ↾t 𝐷)) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
16 | 3, 15 | bitrd 267 | 1 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∀wral 2896 {crab 2900 ⊆ wss 3540 ∪ cuni 4372 class class class wbr 4583 dom cdm 5038 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 ℝcr 9814 < clt 9953 ↾t crest 15904 SAlgcsalg 39204 SMblFncsmblfn 39586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-pre-lttri 9889 ax-pre-lttrn 9890 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 df-er 7629 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-ioo 12050 df-ico 12052 df-smblfn 39587 |
This theorem is referenced by: smfpreimalt 39617 smff 39618 smfdmss 39619 issmff 39620 issmfd 39621 issmflelem 39631 issmfgtlem 39642 issmfgelem 39655 |
Copyright terms: Public domain | W3C validator |