Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isposd Structured version   Visualization version   GIF version

Theorem isposd 16778
 Description: Properties that determine a poset (implicit structure version). (Contributed by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
isposd.k (𝜑𝐾 ∈ V)
isposd.b (𝜑𝐵 = (Base‘𝐾))
isposd.l (𝜑 = (le‘𝐾))
isposd.1 ((𝜑𝑥𝐵) → 𝑥 𝑥)
isposd.2 ((𝜑𝑥𝐵𝑦𝐵) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
isposd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
Assertion
Ref Expression
isposd (𝜑𝐾 ∈ Poset)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐾,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   (𝑥,𝑦,𝑧)

Proof of Theorem isposd
StepHypRef Expression
1 isposd.k . . 3 (𝜑𝐾 ∈ V)
2 isposd.1 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝑥 𝑥)
32adantrr 749 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 𝑥)
43adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → 𝑥 𝑥)
5 isposd.2 . . . . . . . 8 ((𝜑𝑥𝐵𝑦𝐵) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
653expb 1258 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
76adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
8 isposd.3 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
983exp2 1277 . . . . . . 7 (𝜑 → (𝑥𝐵 → (𝑦𝐵 → (𝑧𝐵 → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)))))
109imp42 618 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
114, 7, 103jca 1235 . . . . 5 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)))
1211ralrimiva 2949 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)))
1312ralrimivva 2954 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)))
14 isposd.b . . . . 5 (𝜑𝐵 = (Base‘𝐾))
15 isposd.l . . . . . . . . 9 (𝜑 = (le‘𝐾))
1615breqd 4594 . . . . . . . 8 (𝜑 → (𝑥 𝑥𝑥(le‘𝐾)𝑥))
1715breqd 4594 . . . . . . . . . 10 (𝜑 → (𝑥 𝑦𝑥(le‘𝐾)𝑦))
1815breqd 4594 . . . . . . . . . 10 (𝜑 → (𝑦 𝑥𝑦(le‘𝐾)𝑥))
1917, 18anbi12d 743 . . . . . . . . 9 (𝜑 → ((𝑥 𝑦𝑦 𝑥) ↔ (𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥)))
2019imbi1d 330 . . . . . . . 8 (𝜑 → (((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ↔ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦)))
2115breqd 4594 . . . . . . . . . 10 (𝜑 → (𝑦 𝑧𝑦(le‘𝐾)𝑧))
2217, 21anbi12d 743 . . . . . . . . 9 (𝜑 → ((𝑥 𝑦𝑦 𝑧) ↔ (𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧)))
2315breqd 4594 . . . . . . . . 9 (𝜑 → (𝑥 𝑧𝑥(le‘𝐾)𝑧))
2422, 23imbi12d 333 . . . . . . . 8 (𝜑 → (((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧) ↔ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))
2516, 20, 243anbi123d 1391 . . . . . . 7 (𝜑 → ((𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)) ↔ (𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))))
2614, 25raleqbidv 3129 . . . . . 6 (𝜑 → (∀𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)) ↔ ∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))))
2714, 26raleqbidv 3129 . . . . 5 (𝜑 → (∀𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)) ↔ ∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))))
2814, 27raleqbidv 3129 . . . 4 (𝜑 → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)) ↔ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))))
2928anbi2d 736 . . 3 (𝜑 → ((𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦) ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))) ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧)))))
301, 13, 29mpbi2and 958 . 2 (𝜑 → (𝐾 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))))
31 eqid 2610 . . 3 (Base‘𝐾) = (Base‘𝐾)
32 eqid 2610 . . 3 (le‘𝐾) = (le‘𝐾)
3331, 32ispos 16770 . 2 (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)∀𝑧 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑥 ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑥) → 𝑥 = 𝑦) ∧ ((𝑥(le‘𝐾)𝑦𝑦(le‘𝐾)𝑧) → 𝑥(le‘𝐾)𝑧))))
3430, 33sylibr 223 1 (𝜑𝐾 ∈ Poset)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  Vcvv 3173   class class class wbr 4583  ‘cfv 5804  Basecbs 15695  lecple 15775  Posetcpo 16763 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-poset 16769 This theorem is referenced by:  pospo  16796  odupos  16958  ipopos  16983  zntoslem  19724
 Copyright terms: Public domain W3C validator