Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0pos | Structured version Visualization version GIF version |
Description: Technical lemma to simplify the statement of ipopos 16983. The empty set is (rather pathologically) a poset under our definitions, since it has an empty base set (str0 15739) and any relation partially orders an empty set. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
0pos | ⊢ ∅ ∈ Poset |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4718 | . 2 ⊢ ∅ ∈ V | |
2 | ral0 4028 | . 2 ⊢ ∀𝑎 ∈ ∅ ∀𝑏 ∈ ∅ ∀𝑐 ∈ ∅ (𝑎∅𝑎 ∧ ((𝑎∅𝑏 ∧ 𝑏∅𝑎) → 𝑎 = 𝑏) ∧ ((𝑎∅𝑏 ∧ 𝑏∅𝑐) → 𝑎∅𝑐)) | |
3 | base0 15740 | . . 3 ⊢ ∅ = (Base‘∅) | |
4 | df-ple 15788 | . . . 4 ⊢ le = Slot ;10 | |
5 | 4 | str0 15739 | . . 3 ⊢ ∅ = (le‘∅) |
6 | 3, 5 | ispos 16770 | . 2 ⊢ (∅ ∈ Poset ↔ (∅ ∈ V ∧ ∀𝑎 ∈ ∅ ∀𝑏 ∈ ∅ ∀𝑐 ∈ ∅ (𝑎∅𝑎 ∧ ((𝑎∅𝑏 ∧ 𝑏∅𝑎) → 𝑎 = 𝑏) ∧ ((𝑎∅𝑏 ∧ 𝑏∅𝑐) → 𝑎∅𝑐)))) |
7 | 1, 2, 6 | mpbir2an 957 | 1 ⊢ ∅ ∈ Poset |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1031 ∈ wcel 1977 ∀wral 2896 Vcvv 3173 ∅c0 3874 class class class wbr 4583 0cc0 9815 1c1 9816 ;cdc 11369 lecple 15775 Posetcpo 16763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-slot 15699 df-base 15700 df-ple 15788 df-poset 16769 |
This theorem is referenced by: ipopos 16983 |
Copyright terms: Public domain | W3C validator |