MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpo Structured version   Visualization version   GIF version

Theorem isgrpo 26735
Description: The predicate "is a group operation." Note that 𝑋 is the base set of the group. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
isgrp.1 𝑋 = ran 𝐺
Assertion
Ref Expression
isgrpo (𝐺𝐴 → (𝐺 ∈ GrpOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))))
Distinct variable groups:   𝑥,𝑢,𝑦,𝑧,𝐺   𝑢,𝑋,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑢)

Proof of Theorem isgrpo
Dummy variables 𝑔 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 feq1 5939 . . . . . 6 (𝑔 = 𝐺 → (𝑔:(𝑡 × 𝑡)⟶𝑡𝐺:(𝑡 × 𝑡)⟶𝑡))
2 oveq 6555 . . . . . . . . . 10 (𝑔 = 𝐺 → ((𝑥𝑔𝑦)𝑔𝑧) = ((𝑥𝑔𝑦)𝐺𝑧))
3 oveq 6555 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
43oveq1d 6564 . . . . . . . . . 10 (𝑔 = 𝐺 → ((𝑥𝑔𝑦)𝐺𝑧) = ((𝑥𝐺𝑦)𝐺𝑧))
52, 4eqtrd 2644 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑥𝑔𝑦)𝑔𝑧) = ((𝑥𝐺𝑦)𝐺𝑧))
6 oveq 6555 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥𝑔(𝑦𝑔𝑧)) = (𝑥𝐺(𝑦𝑔𝑧)))
7 oveq 6555 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑦𝑔𝑧) = (𝑦𝐺𝑧))
87oveq2d 6565 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑥𝐺(𝑦𝑔𝑧)) = (𝑥𝐺(𝑦𝐺𝑧)))
96, 8eqtrd 2644 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑥𝑔(𝑦𝑔𝑧)) = (𝑥𝐺(𝑦𝐺𝑧)))
105, 9eqeq12d 2625 . . . . . . . 8 (𝑔 = 𝐺 → (((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ↔ ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
1110ralbidv 2969 . . . . . . 7 (𝑔 = 𝐺 → (∀𝑧𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ↔ ∀𝑧𝑡 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
12112ralbidv 2972 . . . . . 6 (𝑔 = 𝐺 → (∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ↔ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
13 oveq 6555 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑢𝑔𝑥) = (𝑢𝐺𝑥))
1413eqeq1d 2612 . . . . . . . 8 (𝑔 = 𝐺 → ((𝑢𝑔𝑥) = 𝑥 ↔ (𝑢𝐺𝑥) = 𝑥))
15 oveq 6555 . . . . . . . . . 10 (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥))
1615eqeq1d 2612 . . . . . . . . 9 (𝑔 = 𝐺 → ((𝑦𝑔𝑥) = 𝑢 ↔ (𝑦𝐺𝑥) = 𝑢))
1716rexbidv 3034 . . . . . . . 8 (𝑔 = 𝐺 → (∃𝑦𝑡 (𝑦𝑔𝑥) = 𝑢 ↔ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢))
1814, 17anbi12d 743 . . . . . . 7 (𝑔 = 𝐺 → (((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝑔𝑥) = 𝑢) ↔ ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢)))
1918rexralbidv 3040 . . . . . 6 (𝑔 = 𝐺 → (∃𝑢𝑡𝑥𝑡 ((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝑔𝑥) = 𝑢) ↔ ∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢)))
201, 12, 193anbi123d 1391 . . . . 5 (𝑔 = 𝐺 → ((𝑔:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝑔𝑥) = 𝑢)) ↔ (𝐺:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢))))
2120exbidv 1837 . . . 4 (𝑔 = 𝐺 → (∃𝑡(𝑔:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝑔𝑥) = 𝑢)) ↔ ∃𝑡(𝐺:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢))))
22 df-grpo 26731 . . . 4 GrpOp = {𝑔 ∣ ∃𝑡(𝑔:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝑔𝑥) = 𝑢))}
2321, 22elab2g 3322 . . 3 (𝐺𝐴 → (𝐺 ∈ GrpOp ↔ ∃𝑡(𝐺:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢))))
24 simpl 472 . . . . . . . . . . . . . 14 (((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢) → (𝑢𝐺𝑥) = 𝑥)
2524ralimi 2936 . . . . . . . . . . . . 13 (∀𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢) → ∀𝑥𝑡 (𝑢𝐺𝑥) = 𝑥)
26 oveq2 6557 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑢𝐺𝑥) = (𝑢𝐺𝑧))
27 id 22 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧𝑥 = 𝑧)
2826, 27eqeq12d 2625 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ((𝑢𝐺𝑥) = 𝑥 ↔ (𝑢𝐺𝑧) = 𝑧))
29 eqcom 2617 . . . . . . . . . . . . . . . 16 ((𝑢𝐺𝑧) = 𝑧𝑧 = (𝑢𝐺𝑧))
3028, 29syl6bb 275 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → ((𝑢𝐺𝑥) = 𝑥𝑧 = (𝑢𝐺𝑧)))
3130rspcv 3278 . . . . . . . . . . . . . 14 (𝑧𝑡 → (∀𝑥𝑡 (𝑢𝐺𝑥) = 𝑥𝑧 = (𝑢𝐺𝑧)))
32 oveq2 6557 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → (𝑢𝐺𝑦) = (𝑢𝐺𝑧))
3332eqeq2d 2620 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → (𝑧 = (𝑢𝐺𝑦) ↔ 𝑧 = (𝑢𝐺𝑧)))
3433rspcev 3282 . . . . . . . . . . . . . . 15 ((𝑧𝑡𝑧 = (𝑢𝐺𝑧)) → ∃𝑦𝑡 𝑧 = (𝑢𝐺𝑦))
3534ex 449 . . . . . . . . . . . . . 14 (𝑧𝑡 → (𝑧 = (𝑢𝐺𝑧) → ∃𝑦𝑡 𝑧 = (𝑢𝐺𝑦)))
3631, 35syld 46 . . . . . . . . . . . . 13 (𝑧𝑡 → (∀𝑥𝑡 (𝑢𝐺𝑥) = 𝑥 → ∃𝑦𝑡 𝑧 = (𝑢𝐺𝑦)))
3725, 36syl5 33 . . . . . . . . . . . 12 (𝑧𝑡 → (∀𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢) → ∃𝑦𝑡 𝑧 = (𝑢𝐺𝑦)))
3837reximdv 2999 . . . . . . . . . . 11 (𝑧𝑡 → (∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢) → ∃𝑢𝑡𝑦𝑡 𝑧 = (𝑢𝐺𝑦)))
3938impcom 445 . . . . . . . . . 10 ((∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢) ∧ 𝑧𝑡) → ∃𝑢𝑡𝑦𝑡 𝑧 = (𝑢𝐺𝑦))
4039ralrimiva 2949 . . . . . . . . 9 (∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢) → ∀𝑧𝑡𝑢𝑡𝑦𝑡 𝑧 = (𝑢𝐺𝑦))
4140anim2i 591 . . . . . . . 8 ((𝐺:(𝑡 × 𝑡)⟶𝑡 ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢)) → (𝐺:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑧𝑡𝑢𝑡𝑦𝑡 𝑧 = (𝑢𝐺𝑦)))
42 foov 6706 . . . . . . . 8 (𝐺:(𝑡 × 𝑡)–onto𝑡 ↔ (𝐺:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑧𝑡𝑢𝑡𝑦𝑡 𝑧 = (𝑢𝐺𝑦)))
4341, 42sylibr 223 . . . . . . 7 ((𝐺:(𝑡 × 𝑡)⟶𝑡 ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢)) → 𝐺:(𝑡 × 𝑡)–onto𝑡)
44 forn 6031 . . . . . . . 8 (𝐺:(𝑡 × 𝑡)–onto𝑡 → ran 𝐺 = 𝑡)
4544eqcomd 2616 . . . . . . 7 (𝐺:(𝑡 × 𝑡)–onto𝑡𝑡 = ran 𝐺)
4643, 45syl 17 . . . . . 6 ((𝐺:(𝑡 × 𝑡)⟶𝑡 ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢)) → 𝑡 = ran 𝐺)
47463adant2 1073 . . . . 5 ((𝐺:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢)) → 𝑡 = ran 𝐺)
4847pm4.71ri 663 . . . 4 ((𝐺:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢)) ↔ (𝑡 = ran 𝐺 ∧ (𝐺:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢))))
4948exbii 1764 . . 3 (∃𝑡(𝐺:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢)) ↔ ∃𝑡(𝑡 = ran 𝐺 ∧ (𝐺:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢))))
5023, 49syl6bb 275 . 2 (𝐺𝐴 → (𝐺 ∈ GrpOp ↔ ∃𝑡(𝑡 = ran 𝐺 ∧ (𝐺:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢)))))
51 rnexg 6990 . . 3 (𝐺𝐴 → ran 𝐺 ∈ V)
52 isgrp.1 . . . . . 6 𝑋 = ran 𝐺
5352eqeq2i 2622 . . . . 5 (𝑡 = 𝑋𝑡 = ran 𝐺)
54 xpeq1 5052 . . . . . . . . 9 (𝑡 = 𝑋 → (𝑡 × 𝑡) = (𝑋 × 𝑡))
55 xpeq2 5053 . . . . . . . . 9 (𝑡 = 𝑋 → (𝑋 × 𝑡) = (𝑋 × 𝑋))
5654, 55eqtrd 2644 . . . . . . . 8 (𝑡 = 𝑋 → (𝑡 × 𝑡) = (𝑋 × 𝑋))
5756feq2d 5944 . . . . . . 7 (𝑡 = 𝑋 → (𝐺:(𝑡 × 𝑡)⟶𝑡𝐺:(𝑋 × 𝑋)⟶𝑡))
58 feq3 5941 . . . . . . 7 (𝑡 = 𝑋 → (𝐺:(𝑋 × 𝑋)⟶𝑡𝐺:(𝑋 × 𝑋)⟶𝑋))
5957, 58bitrd 267 . . . . . 6 (𝑡 = 𝑋 → (𝐺:(𝑡 × 𝑡)⟶𝑡𝐺:(𝑋 × 𝑋)⟶𝑋))
60 raleq 3115 . . . . . . . 8 (𝑡 = 𝑋 → (∀𝑧𝑡 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
6160raleqbi1dv 3123 . . . . . . 7 (𝑡 = 𝑋 → (∀𝑦𝑡𝑧𝑡 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
6261raleqbi1dv 3123 . . . . . 6 (𝑡 = 𝑋 → (∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ↔ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
63 rexeq 3116 . . . . . . . . 9 (𝑡 = 𝑋 → (∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢 ↔ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))
6463anbi2d 736 . . . . . . . 8 (𝑡 = 𝑋 → (((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢) ↔ ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢)))
6564raleqbi1dv 3123 . . . . . . 7 (𝑡 = 𝑋 → (∀𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢) ↔ ∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢)))
6665rexeqbi1dv 3124 . . . . . 6 (𝑡 = 𝑋 → (∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢) ↔ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢)))
6759, 62, 663anbi123d 1391 . . . . 5 (𝑡 = 𝑋 → ((𝐺:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢)) ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))))
6853, 67sylbir 224 . . . 4 (𝑡 = ran 𝐺 → ((𝐺:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢)) ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))))
6968ceqsexgv 3305 . . 3 (ran 𝐺 ∈ V → (∃𝑡(𝑡 = ran 𝐺 ∧ (𝐺:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢))) ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))))
7051, 69syl 17 . 2 (𝐺𝐴 → (∃𝑡(𝑡 = ran 𝐺 ∧ (𝐺:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝐺𝑥) = 𝑢))) ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))))
7150, 70bitrd 267 1 (𝐺𝐴 → (𝐺 ∈ GrpOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wral 2896  wrex 2897  Vcvv 3173   × cxp 5036  ran crn 5039  wf 5800  ontowfo 5802  (class class class)co 6549  GrpOpcgr 26727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812  df-ov 6552  df-grpo 26731
This theorem is referenced by:  isgrpoi  26736  grpofo  26737  grpolidinv  26739  grpoass  26741  grpomndo  32844  isgrpda  32924
  Copyright terms: Public domain W3C validator