Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isconngr Structured version   Visualization version   GIF version

Theorem isconngr 41356
 Description: The property of being a connected graph. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.)
Hypothesis
Ref Expression
isconngr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
isconngr (𝐺𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
Distinct variable groups:   𝑓,𝑘,𝑛,𝑝,𝐺   𝑘,𝑉,𝑛
Allowed substitution hints:   𝑉(𝑓,𝑝)   𝑊(𝑓,𝑘,𝑛,𝑝)

Proof of Theorem isconngr
Dummy variables 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-conngr 41354 . . 3 ConnGraph = {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}
21eleq2i 2680 . 2 (𝐺 ∈ ConnGraph ↔ 𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝})
3 fvex 6113 . . . . . 6 (Vtx‘𝑔) ∈ V
4 id 22 . . . . . . 7 (𝑣 = (Vtx‘𝑔) → 𝑣 = (Vtx‘𝑔))
5 raleq 3115 . . . . . . 7 (𝑣 = (Vtx‘𝑔) → (∀𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
64, 5raleqbidv 3129 . . . . . 6 (𝑣 = (Vtx‘𝑔) → (∀𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝))
73, 6sbcie 3437 . . . . 5 ([(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝)
87abbii 2726 . . . 4 {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}
98eleq2i 2680 . . 3 (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ 𝐺 ∈ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝})
10 fveq2 6103 . . . . . 6 ( = 𝐺 → (Vtx‘) = (Vtx‘𝐺))
11 isconngr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
1210, 11syl6eqr 2662 . . . . 5 ( = 𝐺 → (Vtx‘) = 𝑉)
13 fveq2 6103 . . . . . . . . 9 ( = 𝐺 → (PathsOn‘) = (PathsOn‘𝐺))
1413oveqd 6566 . . . . . . . 8 ( = 𝐺 → (𝑘(PathsOn‘)𝑛) = (𝑘(PathsOn‘𝐺)𝑛))
1514breqd 4594 . . . . . . 7 ( = 𝐺 → (𝑓(𝑘(PathsOn‘)𝑛)𝑝𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
16152exbidv 1839 . . . . . 6 ( = 𝐺 → (∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
1712, 16raleqbidv 3129 . . . . 5 ( = 𝐺 → (∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝 ↔ ∀𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
1812, 17raleqbidv 3129 . . . 4 ( = 𝐺 → (∀𝑘 ∈ (Vtx‘)∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝 ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
19 fveq2 6103 . . . . . 6 (𝑔 = → (Vtx‘𝑔) = (Vtx‘))
20 fveq2 6103 . . . . . . . . . 10 (𝑔 = → (PathsOn‘𝑔) = (PathsOn‘))
2120oveqd 6566 . . . . . . . . 9 (𝑔 = → (𝑘(PathsOn‘𝑔)𝑛) = (𝑘(PathsOn‘)𝑛))
2221breqd 4594 . . . . . . . 8 (𝑔 = → (𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝𝑓(𝑘(PathsOn‘)𝑛)𝑝))
23222exbidv 1839 . . . . . . 7 (𝑔 = → (∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝))
2419, 23raleqbidv 3129 . . . . . 6 (𝑔 = → (∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝))
2519, 24raleqbidv 3129 . . . . 5 (𝑔 = → (∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝 ↔ ∀𝑘 ∈ (Vtx‘)∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝))
2625cbvabv 2734 . . . 4 {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} = { ∣ ∀𝑘 ∈ (Vtx‘)∀𝑛 ∈ (Vtx‘)∃𝑓𝑝 𝑓(𝑘(PathsOn‘)𝑛)𝑝}
2718, 26elab2g 3322 . . 3 (𝐺𝑊 → (𝐺 ∈ {𝑔 ∣ ∀𝑘 ∈ (Vtx‘𝑔)∀𝑛 ∈ (Vtx‘𝑔)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
289, 27syl5bb 271 . 2 (𝐺𝑊 → (𝐺 ∈ {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
292, 28syl5bb 271 1 (𝐺𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘𝑉𝑛𝑉𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   = wceq 1475  ∃wex 1695   ∈ wcel 1977  {cab 2596  ∀wral 2896  [wsbc 3402   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  Vtxcvtx 25673  PathsOncpthson 40921  ConnGraphcconngr 41353 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-conngr 41354 This theorem is referenced by:  0conngr  41359  0vconngr  41360  1conngr  41361  conngrv2edg  41362
 Copyright terms: Public domain W3C validator