Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  conngrv2edg Structured version   Visualization version   GIF version

Theorem conngrv2edg 41362
Description: A vertex in a connected graph with more than one vertex is incident with at least one edge. Formerly part of proof for vdgn0frgrav2 26551. (Contributed by Alexander van der Vekens, 9-Dec-2017.) (Revised by AV, 4-Apr-2021.)
Hypotheses
Ref Expression
conngrv2edg.v 𝑉 = (Vtx‘𝐺)
conngrv2edg.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
conngrv2edg ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)
Distinct variable groups:   𝑒,𝐺   𝑒,𝐼   𝑒,𝑁
Allowed substitution hint:   𝑉(𝑒)

Proof of Theorem conngrv2edg
Dummy variables 𝑎 𝑏 𝑓 𝑝 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 conngrv2edg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 fvex 6113 . . . 4 (Vtx‘𝐺) ∈ V
31, 2eqeltri 2684 . . 3 𝑉 ∈ V
4 simp3 1056 . . 3 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → 1 < (#‘𝑉))
5 simp2 1055 . . 3 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → 𝑁𝑉)
6 hashgt12el2 13071 . . 3 ((𝑉 ∈ V ∧ 1 < (#‘𝑉) ∧ 𝑁𝑉) → ∃𝑣𝑉 𝑁𝑣)
73, 4, 5, 6mp3an2i 1421 . 2 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → ∃𝑣𝑉 𝑁𝑣)
81isconngr 41356 . . . . . . . 8 (𝐺 ∈ ConnGraph → (𝐺 ∈ ConnGraph ↔ ∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝))
9 oveq1 6556 . . . . . . . . . . . . . 14 (𝑎 = 𝑁 → (𝑎(PathsOn‘𝐺)𝑏) = (𝑁(PathsOn‘𝐺)𝑏))
109breqd 4594 . . . . . . . . . . . . 13 (𝑎 = 𝑁 → (𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝))
11102exbidv 1839 . . . . . . . . . . . 12 (𝑎 = 𝑁 → (∃𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝))
12 oveq2 6557 . . . . . . . . . . . . . 14 (𝑏 = 𝑣 → (𝑁(PathsOn‘𝐺)𝑏) = (𝑁(PathsOn‘𝐺)𝑣))
1312breqd 4594 . . . . . . . . . . . . 13 (𝑏 = 𝑣 → (𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
14132exbidv 1839 . . . . . . . . . . . 12 (𝑏 = 𝑣 → (∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑏)𝑝 ↔ ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
1511, 14rspc2v 3293 . . . . . . . . . . 11 ((𝑁𝑉𝑣𝑉) → (∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
1615ad2ant2r 779 . . . . . . . . . 10 (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 → ∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝))
17 pthontrlon 40953 . . . . . . . . . . . . 13 (𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝𝑓(𝑁(TrailsOn‘𝐺)𝑣)𝑝)
18 trlsonwlkon 40917 . . . . . . . . . . . . 13 (𝑓(𝑁(TrailsOn‘𝐺)𝑣)𝑝𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝)
19 simpl 472 . . . . . . . . . . . . . . 15 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ ((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣))) → 𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝)
20 simprr 792 . . . . . . . . . . . . . . . 16 (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → 𝑁𝑣)
21 wlkOn2n0 40874 . . . . . . . . . . . . . . . 16 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝𝑁𝑣) → (#‘𝑓) ≠ 0)
2220, 21sylan2 490 . . . . . . . . . . . . . . 15 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ ((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣))) → (#‘𝑓) ≠ 0)
2319, 22jca 553 . . . . . . . . . . . . . 14 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ ((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣))) → (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (#‘𝑓) ≠ 0))
2423ex 449 . . . . . . . . . . . . 13 (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 → (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (#‘𝑓) ≠ 0)))
2517, 18, 243syl 18 . . . . . . . . . . . 12 (𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝 → (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (#‘𝑓) ≠ 0)))
26 conngrv2edg.i . . . . . . . . . . . . 13 𝐼 = (iEdg‘𝐺)
2726wlkOnl1iedg 40873 . . . . . . . . . . . 12 ((𝑓(𝑁(WalksOn‘𝐺)𝑣)𝑝 ∧ (#‘𝑓) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)
2825, 27syl6com 36 . . . . . . . . . . 11 (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
2928exlimdvv 1849 . . . . . . . . . 10 (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (∃𝑓𝑝 𝑓(𝑁(PathsOn‘𝐺)𝑣)𝑝 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
3016, 29syld 46 . . . . . . . . 9 (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → (∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
3130com12 32 . . . . . . . 8 (∀𝑎𝑉𝑏𝑉𝑓𝑝 𝑓(𝑎(PathsOn‘𝐺)𝑏)𝑝 → (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
328, 31syl6bi 242 . . . . . . 7 (𝐺 ∈ ConnGraph → (𝐺 ∈ ConnGraph → (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)))
3332pm2.43i 50 . . . . . 6 (𝐺 ∈ ConnGraph → (((𝑁𝑉 ∧ 1 < (#‘𝑉)) ∧ (𝑣𝑉𝑁𝑣)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
3433expd 451 . . . . 5 (𝐺 ∈ ConnGraph → ((𝑁𝑉 ∧ 1 < (#‘𝑉)) → ((𝑣𝑉𝑁𝑣) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)))
35343impib 1254 . . . 4 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → ((𝑣𝑉𝑁𝑣) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
3635expd 451 . . 3 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → (𝑣𝑉 → (𝑁𝑣 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)))
3736rexlimdv 3012 . 2 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → (∃𝑣𝑉 𝑁𝑣 → ∃𝑒 ∈ ran 𝐼 𝑁𝑒))
387, 37mpd 15 1 ((𝐺 ∈ ConnGraph ∧ 𝑁𝑉 ∧ 1 < (#‘𝑉)) → ∃𝑒 ∈ ran 𝐼 𝑁𝑒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173   class class class wbr 4583  ran crn 5039  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   < clt 9953  #chash 12979  Vtxcvtx 25673  iEdgciedg 25674  WalksOncwlkson 40798  TrailsOnctrlson 40900  PathsOncpthson 40921  ConnGraphcconngr 41353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-1wlks 40800  df-wlkson 40802  df-trls 40901  df-trlson 40902  df-pths 40923  df-pthson 40925  df-conngr 41354
This theorem is referenced by:  vdn0conngrumgrv2  41363
  Copyright terms: Public domain W3C validator