Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0vconngr Structured version   Visualization version   GIF version

Theorem 0vconngr 41360
Description: A graph without vertices is connected. (Contributed by Alexander van der Vekens, 2-Dec-2017.) (Revised by AV, 15-Feb-2021.)
Assertion
Ref Expression
0vconngr ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ ConnGraph)

Proof of Theorem 0vconngr
Dummy variables 𝑓 𝑘 𝑛 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 4028 . . . 4 𝑘 ∈ ∅ ∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝
2 raleq 3115 . . . 4 ((Vtx‘𝐺) = ∅ → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝 ↔ ∀𝑘 ∈ ∅ ∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
31, 2mpbiri 247 . . 3 ((Vtx‘𝐺) = ∅ → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
43adantl 481 . 2 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝)
5 eqid 2610 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
65isconngr 41356 . . 3 (𝐺𝑊 → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
76adantr 480 . 2 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ ConnGraph ↔ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑛 ∈ (Vtx‘𝐺)∃𝑓𝑝 𝑓(𝑘(PathsOn‘𝐺)𝑛)𝑝))
84, 7mpbird 246 1 ((𝐺𝑊 ∧ (Vtx‘𝐺) = ∅) → 𝐺 ∈ ConnGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wral 2896  c0 3874   class class class wbr 4583  cfv 5804  (class class class)co 6549  Vtxcvtx 25673  PathsOncpthson 40921  ConnGraphcconngr 41353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-nul 4717
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-ov 6552  df-conngr 41354
This theorem is referenced by:  1conngr  41361
  Copyright terms: Public domain W3C validator