Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  intwun Structured version   Visualization version   GIF version

Theorem intwun 9436
 Description: The intersection of a collection of weak universes is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
intwun ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → 𝐴 ∈ WUni)

Proof of Theorem intwun
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . . . . 6 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → 𝐴 ⊆ WUni)
21sselda 3568 . . . . 5 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑢𝐴) → 𝑢 ∈ WUni)
3 wuntr 9406 . . . . 5 (𝑢 ∈ WUni → Tr 𝑢)
42, 3syl 17 . . . 4 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑢𝐴) → Tr 𝑢)
54ralrimiva 2949 . . 3 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → ∀𝑢𝐴 Tr 𝑢)
6 trint 4696 . . 3 (∀𝑢𝐴 Tr 𝑢 → Tr 𝐴)
75, 6syl 17 . 2 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → Tr 𝐴)
82wun0 9419 . . . . 5 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑢𝐴) → ∅ ∈ 𝑢)
98ralrimiva 2949 . . . 4 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → ∀𝑢𝐴 ∅ ∈ 𝑢)
10 0ex 4718 . . . . 5 ∅ ∈ V
1110elint2 4417 . . . 4 (∅ ∈ 𝐴 ↔ ∀𝑢𝐴 ∅ ∈ 𝑢)
129, 11sylibr 223 . . 3 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
13 ne0i 3880 . . 3 (∅ ∈ 𝐴 𝐴 ≠ ∅)
1412, 13syl 17 . 2 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
152adantlr 747 . . . . . . 7 ((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑢𝐴) → 𝑢 ∈ WUni)
16 intss1 4427 . . . . . . . . . 10 (𝑢𝐴 𝐴𝑢)
1716adantl 481 . . . . . . . . 9 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑢𝐴) → 𝐴𝑢)
1817sselda 3568 . . . . . . . 8 ((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑢𝐴) ∧ 𝑥 𝐴) → 𝑥𝑢)
1918an32s 842 . . . . . . 7 ((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑢𝐴) → 𝑥𝑢)
2015, 19wununi 9407 . . . . . 6 ((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑢𝐴) → 𝑥𝑢)
2120ralrimiva 2949 . . . . 5 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → ∀𝑢𝐴 𝑥𝑢)
22 vuniex 6852 . . . . . 6 𝑥 ∈ V
2322elint2 4417 . . . . 5 ( 𝑥 𝐴 ↔ ∀𝑢𝐴 𝑥𝑢)
2421, 23sylibr 223 . . . 4 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → 𝑥 𝐴)
2515, 19wunpw 9408 . . . . . 6 ((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑢𝐴) → 𝒫 𝑥𝑢)
2625ralrimiva 2949 . . . . 5 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → ∀𝑢𝐴 𝒫 𝑥𝑢)
27 vpwex 4775 . . . . . 6 𝒫 𝑥 ∈ V
2827elint2 4417 . . . . 5 (𝒫 𝑥 𝐴 ↔ ∀𝑢𝐴 𝒫 𝑥𝑢)
2926, 28sylibr 223 . . . 4 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → 𝒫 𝑥 𝐴)
3015adantlr 747 . . . . . . . 8 (((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑦 𝐴) ∧ 𝑢𝐴) → 𝑢 ∈ WUni)
3119adantlr 747 . . . . . . . 8 (((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑦 𝐴) ∧ 𝑢𝐴) → 𝑥𝑢)
3216adantl 481 . . . . . . . . . 10 ((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑢𝐴) → 𝐴𝑢)
3332sselda 3568 . . . . . . . . 9 (((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑢𝐴) ∧ 𝑦 𝐴) → 𝑦𝑢)
3433an32s 842 . . . . . . . 8 (((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑦 𝐴) ∧ 𝑢𝐴) → 𝑦𝑢)
3530, 31, 34wunpr 9410 . . . . . . 7 (((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑦 𝐴) ∧ 𝑢𝐴) → {𝑥, 𝑦} ∈ 𝑢)
3635ralrimiva 2949 . . . . . 6 ((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑦 𝐴) → ∀𝑢𝐴 {𝑥, 𝑦} ∈ 𝑢)
37 prex 4836 . . . . . . 7 {𝑥, 𝑦} ∈ V
3837elint2 4417 . . . . . 6 ({𝑥, 𝑦} ∈ 𝐴 ↔ ∀𝑢𝐴 {𝑥, 𝑦} ∈ 𝑢)
3936, 38sylibr 223 . . . . 5 ((((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) ∧ 𝑦 𝐴) → {𝑥, 𝑦} ∈ 𝐴)
4039ralrimiva 2949 . . . 4 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴)
4124, 29, 403jca 1235 . . 3 (((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → ( 𝑥 𝐴 ∧ 𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴))
4241ralrimiva 2949 . 2 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → ∀𝑥 𝐴( 𝑥 𝐴 ∧ 𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴))
43 simpr 476 . . . 4 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
44 intex 4747 . . . 4 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
4543, 44sylib 207 . . 3 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V)
46 iswun 9405 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ WUni ↔ (Tr 𝐴 𝐴 ≠ ∅ ∧ ∀𝑥 𝐴( 𝑥 𝐴 ∧ 𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴))))
4745, 46syl 17 . 2 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → ( 𝐴 ∈ WUni ↔ (Tr 𝐴 𝐴 ≠ ∅ ∧ ∀𝑥 𝐴( 𝑥 𝐴 ∧ 𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴))))
487, 14, 42, 47mpbir3and 1238 1 ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → 𝐴 ∈ WUni)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  Vcvv 3173   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  {cpr 4127  ∪ cuni 4372  ∩ cint 4410  Tr wtr 4680  WUnicwun 9401 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-pw 4110  df-sn 4126  df-pr 4128  df-uni 4373  df-int 4411  df-tr 4681  df-wun 9403 This theorem is referenced by:  wunccl  9445
 Copyright terms: Public domain W3C validator