MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1limwun Structured version   Visualization version   GIF version

Theorem r1limwun 9437
Description: Each limit stage in the cumulative hierarchy is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
r1limwun ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ∈ WUni)

Proof of Theorem r1limwun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1tr 8522 . . 3 Tr (𝑅1𝐴)
21a1i 11 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → Tr (𝑅1𝐴))
3 limelon 5705 . . . . . 6 ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ∈ On)
4 r1fnon 8513 . . . . . . 7 𝑅1 Fn On
5 fndm 5904 . . . . . . 7 (𝑅1 Fn On → dom 𝑅1 = On)
64, 5ax-mp 5 . . . . . 6 dom 𝑅1 = On
73, 6syl6eleqr 2699 . . . . 5 ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ∈ dom 𝑅1)
8 onssr1 8577 . . . . 5 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
97, 8syl 17 . . . 4 ((𝐴𝑉 ∧ Lim 𝐴) → 𝐴 ⊆ (𝑅1𝐴))
10 0ellim 5704 . . . . 5 (Lim 𝐴 → ∅ ∈ 𝐴)
1110adantl 481 . . . 4 ((𝐴𝑉 ∧ Lim 𝐴) → ∅ ∈ 𝐴)
129, 11sseldd 3569 . . 3 ((𝐴𝑉 ∧ Lim 𝐴) → ∅ ∈ (𝑅1𝐴))
13 ne0i 3880 . . 3 (∅ ∈ (𝑅1𝐴) → (𝑅1𝐴) ≠ ∅)
1412, 13syl 17 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ≠ ∅)
15 rankuni 8609 . . . . . 6 (rank‘ 𝑥) = (rank‘𝑥)
16 rankon 8541 . . . . . . . . 9 (rank‘𝑥) ∈ On
17 eloni 5650 . . . . . . . . 9 ((rank‘𝑥) ∈ On → Ord (rank‘𝑥))
18 orduniss 5738 . . . . . . . . 9 (Ord (rank‘𝑥) → (rank‘𝑥) ⊆ (rank‘𝑥))
1916, 17, 18mp2b 10 . . . . . . . 8 (rank‘𝑥) ⊆ (rank‘𝑥)
2019a1i 11 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘𝑥) ⊆ (rank‘𝑥))
21 rankr1ai 8544 . . . . . . . 8 (𝑥 ∈ (𝑅1𝐴) → (rank‘𝑥) ∈ 𝐴)
2221adantl 481 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘𝑥) ∈ 𝐴)
23 onuni 6885 . . . . . . . . 9 ((rank‘𝑥) ∈ On → (rank‘𝑥) ∈ On)
2416, 23ax-mp 5 . . . . . . . 8 (rank‘𝑥) ∈ On
253adantr 480 . . . . . . . 8 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝐴 ∈ On)
26 ontr2 5689 . . . . . . . 8 (( (rank‘𝑥) ∈ On ∧ 𝐴 ∈ On) → (( (rank‘𝑥) ⊆ (rank‘𝑥) ∧ (rank‘𝑥) ∈ 𝐴) → (rank‘𝑥) ∈ 𝐴))
2724, 25, 26sylancr 694 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (( (rank‘𝑥) ⊆ (rank‘𝑥) ∧ (rank‘𝑥) ∈ 𝐴) → (rank‘𝑥) ∈ 𝐴))
2820, 22, 27mp2and 711 . . . . . 6 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘𝑥) ∈ 𝐴)
2915, 28syl5eqel 2692 . . . . 5 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → (rank‘ 𝑥) ∈ 𝐴)
30 r1elwf 8542 . . . . . . . 8 (𝑥 ∈ (𝑅1𝐴) → 𝑥 (𝑅1 “ On))
3130adantl 481 . . . . . . 7 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 (𝑅1 “ On))
32 uniwf 8565 . . . . . . 7 (𝑥 (𝑅1 “ On) ↔ 𝑥 (𝑅1 “ On))
3331, 32sylib 207 . . . . . 6 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 (𝑅1 “ On))
347adantr 480 . . . . . 6 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝐴 ∈ dom 𝑅1)
35 rankr1ag 8548 . . . . . 6 (( 𝑥 (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → ( 𝑥 ∈ (𝑅1𝐴) ↔ (rank‘ 𝑥) ∈ 𝐴))
3633, 34, 35syl2anc 691 . . . . 5 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → ( 𝑥 ∈ (𝑅1𝐴) ↔ (rank‘ 𝑥) ∈ 𝐴))
3729, 36mpbird 246 . . . 4 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 ∈ (𝑅1𝐴))
38 r1pwcl 8593 . . . . . 6 (Lim 𝐴 → (𝑥 ∈ (𝑅1𝐴) ↔ 𝒫 𝑥 ∈ (𝑅1𝐴)))
3938adantl 481 . . . . 5 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑥 ∈ (𝑅1𝐴) ↔ 𝒫 𝑥 ∈ (𝑅1𝐴)))
4039biimpa 500 . . . 4 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝒫 𝑥 ∈ (𝑅1𝐴))
4130ad2antlr 759 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → 𝑥 (𝑅1 “ On))
42 r1elwf 8542 . . . . . . . . 9 (𝑦 ∈ (𝑅1𝐴) → 𝑦 (𝑅1 “ On))
4342adantl 481 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → 𝑦 (𝑅1 “ On))
44 rankprb 8597 . . . . . . . 8 ((𝑥 (𝑅1 “ On) ∧ 𝑦 (𝑅1 “ On)) → (rank‘{𝑥, 𝑦}) = suc ((rank‘𝑥) ∪ (rank‘𝑦)))
4541, 43, 44syl2anc 691 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘{𝑥, 𝑦}) = suc ((rank‘𝑥) ∪ (rank‘𝑦)))
46 limord 5701 . . . . . . . . . 10 (Lim 𝐴 → Ord 𝐴)
4746ad3antlr 763 . . . . . . . . 9 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → Ord 𝐴)
4822adantr 480 . . . . . . . . 9 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘𝑥) ∈ 𝐴)
49 rankr1ai 8544 . . . . . . . . . 10 (𝑦 ∈ (𝑅1𝐴) → (rank‘𝑦) ∈ 𝐴)
5049adantl 481 . . . . . . . . 9 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘𝑦) ∈ 𝐴)
51 ordunel 6919 . . . . . . . . 9 ((Ord 𝐴 ∧ (rank‘𝑥) ∈ 𝐴 ∧ (rank‘𝑦) ∈ 𝐴) → ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴)
5247, 48, 50, 51syl3anc 1318 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴)
53 limsuc 6941 . . . . . . . . 9 (Lim 𝐴 → (((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴 ↔ suc ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴))
5453ad3antlr 763 . . . . . . . 8 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴 ↔ suc ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴))
5552, 54mpbid 221 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → suc ((rank‘𝑥) ∪ (rank‘𝑦)) ∈ 𝐴)
5645, 55eqeltrd 2688 . . . . . 6 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → (rank‘{𝑥, 𝑦}) ∈ 𝐴)
57 prwf 8557 . . . . . . . 8 ((𝑥 (𝑅1 “ On) ∧ 𝑦 (𝑅1 “ On)) → {𝑥, 𝑦} ∈ (𝑅1 “ On))
5841, 43, 57syl2anc 691 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → {𝑥, 𝑦} ∈ (𝑅1 “ On))
5934adantr 480 . . . . . . 7 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → 𝐴 ∈ dom 𝑅1)
60 rankr1ag 8548 . . . . . . 7 (({𝑥, 𝑦} ∈ (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → ({𝑥, 𝑦} ∈ (𝑅1𝐴) ↔ (rank‘{𝑥, 𝑦}) ∈ 𝐴))
6158, 59, 60syl2anc 691 . . . . . 6 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → ({𝑥, 𝑦} ∈ (𝑅1𝐴) ↔ (rank‘{𝑥, 𝑦}) ∈ 𝐴))
6256, 61mpbird 246 . . . . 5 ((((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) ∧ 𝑦 ∈ (𝑅1𝐴)) → {𝑥, 𝑦} ∈ (𝑅1𝐴))
6362ralrimiva 2949 . . . 4 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴))
6437, 40, 633jca 1235 . . 3 (((𝐴𝑉 ∧ Lim 𝐴) ∧ 𝑥 ∈ (𝑅1𝐴)) → ( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴)))
6564ralrimiva 2949 . 2 ((𝐴𝑉 ∧ Lim 𝐴) → ∀𝑥 ∈ (𝑅1𝐴)( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴)))
66 fvex 6113 . . 3 (𝑅1𝐴) ∈ V
67 iswun 9405 . . 3 ((𝑅1𝐴) ∈ V → ((𝑅1𝐴) ∈ WUni ↔ (Tr (𝑅1𝐴) ∧ (𝑅1𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝑅1𝐴)( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴)))))
6866, 67ax-mp 5 . 2 ((𝑅1𝐴) ∈ WUni ↔ (Tr (𝑅1𝐴) ∧ (𝑅1𝐴) ≠ ∅ ∧ ∀𝑥 ∈ (𝑅1𝐴)( 𝑥 ∈ (𝑅1𝐴) ∧ 𝒫 𝑥 ∈ (𝑅1𝐴) ∧ ∀𝑦 ∈ (𝑅1𝐴){𝑥, 𝑦} ∈ (𝑅1𝐴))))
692, 14, 65, 68syl3anbrc 1239 1 ((𝐴𝑉 ∧ Lim 𝐴) → (𝑅1𝐴) ∈ WUni)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cun 3538  wss 3540  c0 3874  𝒫 cpw 4108  {cpr 4127   cuni 4372  Tr wtr 4680  dom cdm 5038  cima 5041  Ord word 5639  Oncon0 5640  Lim wlim 5641  suc csuc 5642   Fn wfn 5799  cfv 5804  𝑅1cr1 8508  rankcrnk 8509  WUnicwun 9401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-r1 8510  df-rank 8511  df-wun 9403
This theorem is referenced by:  r1wunlim  9438  wunex3  9442
  Copyright terms: Public domain W3C validator