MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wun0 Structured version   Visualization version   GIF version

Theorem wun0 9419
Description: A weak universe contains the empty set. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypothesis
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
Assertion
Ref Expression
wun0 (𝜑 → ∅ ∈ 𝑈)

Proof of Theorem wun0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wun0.1 . . . 4 (𝜑𝑈 ∈ WUni)
2 iswun 9405 . . . . . 6 (𝑈 ∈ WUni → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
32ibi 255 . . . . 5 (𝑈 ∈ WUni → (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)))
43simp2d 1067 . . . 4 (𝑈 ∈ WUni → 𝑈 ≠ ∅)
51, 4syl 17 . . 3 (𝜑𝑈 ≠ ∅)
6 n0 3890 . . 3 (𝑈 ≠ ∅ ↔ ∃𝑥 𝑥𝑈)
75, 6sylib 207 . 2 (𝜑 → ∃𝑥 𝑥𝑈)
81adantr 480 . . 3 ((𝜑𝑥𝑈) → 𝑈 ∈ WUni)
9 simpr 476 . . 3 ((𝜑𝑥𝑈) → 𝑥𝑈)
10 0ss 3924 . . . 4 ∅ ⊆ 𝑥
1110a1i 11 . . 3 ((𝜑𝑥𝑈) → ∅ ⊆ 𝑥)
128, 9, 11wunss 9413 . 2 ((𝜑𝑥𝑈) → ∅ ∈ 𝑈)
137, 12exlimddv 1850 1 (𝜑 → ∅ ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031  wex 1695  wcel 1977  wne 2780  wral 2896  wss 3540  c0 3874  𝒫 cpw 4108  {cpr 4127   cuni 4372  Tr wtr 4680  WUnicwun 9401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554  df-nul 3875  df-pw 4110  df-uni 4373  df-tr 4681  df-wun 9403
This theorem is referenced by:  wunr1om  9420  wunfi  9422  wuntpos  9435  intwun  9436  r1wunlim  9438  wuncval2  9448  wunress  15767  catcoppccl  16581
  Copyright terms: Public domain W3C validator