Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinexg Structured version   Visualization version   GIF version

Theorem iinexg 4751
 Description: The existence of a class intersection. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
iinexg ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → 𝑥𝐴 𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem iinexg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfiin2g 4489 . . 3 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
21adantl 481 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
3 elisset 3188 . . . . . . . . 9 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵)
43rgenw 2908 . . . . . . . 8 𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵)
5 r19.2z 4012 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵)) → ∃𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵))
64, 5mpan2 703 . . . . . . 7 (𝐴 ≠ ∅ → ∃𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵))
7 r19.35 3065 . . . . . . 7 (∃𝑥𝐴 (𝐵𝐶 → ∃𝑦 𝑦 = 𝐵) ↔ (∀𝑥𝐴 𝐵𝐶 → ∃𝑥𝐴𝑦 𝑦 = 𝐵))
86, 7sylib 207 . . . . . 6 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝐵𝐶 → ∃𝑥𝐴𝑦 𝑦 = 𝐵))
98imp 444 . . . . 5 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → ∃𝑥𝐴𝑦 𝑦 = 𝐵)
10 rexcom4 3198 . . . . 5 (∃𝑥𝐴𝑦 𝑦 = 𝐵 ↔ ∃𝑦𝑥𝐴 𝑦 = 𝐵)
119, 10sylib 207 . . . 4 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → ∃𝑦𝑥𝐴 𝑦 = 𝐵)
12 abn0 3908 . . . 4 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅ ↔ ∃𝑦𝑥𝐴 𝑦 = 𝐵)
1311, 12sylibr 223 . . 3 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅)
14 intex 4747 . . 3 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ≠ ∅ ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
1513, 14sylib 207 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
162, 15eqeltrd 2688 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐶) → 𝑥𝐴 𝐵 ∈ V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  {cab 2596   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  Vcvv 3173  ∅c0 3874  ∩ cint 4410  ∩ ciin 4456 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554  df-nul 3875  df-int 4411  df-iin 4458 This theorem is referenced by:  fclsval  21622  taylfval  23917  smflimlem1  39657
 Copyright terms: Public domain W3C validator