Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  taylfval Structured version   Visualization version   GIF version

Theorem taylfval 23917
 Description: Define the Taylor polynomial of a function. The constant Tayl is a function of five arguments: 𝑆 is the base set with respect to evaluate the derivatives (generally ℝ or ℂ), 𝐹 is the function we are approximating, at point 𝐵, to order 𝑁. The result is a polynomial function of 𝑥. This "extended" version of taylpfval 23923 additionally handles the case 𝑁 = +∞, in which case this is not a polynomial but an infinite series, the Taylor series of the function. (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
taylfval.s (𝜑𝑆 ∈ {ℝ, ℂ})
taylfval.f (𝜑𝐹:𝐴⟶ℂ)
taylfval.a (𝜑𝐴𝑆)
taylfval.n (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
taylfval.b ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
taylfval.t 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
Assertion
Ref Expression
taylfval (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
Distinct variable groups:   𝑥,𝑘,𝐵   𝑘,𝐹,𝑥   𝜑,𝑘,𝑥   𝑘,𝑁,𝑥   𝑆,𝑘,𝑥   𝑥,𝑇
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝑇(𝑘)

Proof of Theorem taylfval
Dummy variables 𝑎 𝑛 𝑓 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 taylfval.t . 2 𝑇 = (𝑁(𝑆 Tayl 𝐹)𝐵)
2 df-tayl 23913 . . . . 5 Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))))
32a1i 11 . . . 4 (𝜑 → Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))))
4 eqidd 2611 . . . . 5 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (ℕ0 ∪ {+∞}) = (ℕ0 ∪ {+∞}))
5 oveq12 6558 . . . . . . . . 9 ((𝑠 = 𝑆𝑓 = 𝐹) → (𝑠 D𝑛 𝑓) = (𝑆 D𝑛 𝐹))
65ad2antlr 759 . . . . . . . 8 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → (𝑠 D𝑛 𝑓) = (𝑆 D𝑛 𝐹))
76fveq1d 6105 . . . . . . 7 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → ((𝑠 D𝑛 𝑓)‘𝑘) = ((𝑆 D𝑛 𝐹)‘𝑘))
87dmeqd 5248 . . . . . 6 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → dom ((𝑠 D𝑛 𝑓)‘𝑘) = dom ((𝑆 D𝑛 𝐹)‘𝑘))
98iineq2dv 4479 . . . . 5 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) = 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
107fveq1d 6105 . . . . . . . . . . 11 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → (((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) = (((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎))
1110oveq1d 6564 . . . . . . . . . 10 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → ((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) = ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)))
1211oveq1d 6564 . . . . . . . . 9 (((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) ∧ 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)) → (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))
1312mpteq2dva 4672 . . . . . . . 8 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))) = (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))
1413oveq2d 6565 . . . . . . 7 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))) = (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))
1514xpeq2d 5063 . . . . . 6 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))
1615iuneq2d 4483 . . . . 5 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))
174, 9, 16mpt2eq123dv 6615 . . . 4 ((𝜑 ∧ (𝑠 = 𝑆𝑓 = 𝐹)) → (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) = (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))))
18 simpr 476 . . . . 5 ((𝜑𝑠 = 𝑆) → 𝑠 = 𝑆)
1918oveq2d 6565 . . . 4 ((𝜑𝑠 = 𝑆) → (ℂ ↑pm 𝑠) = (ℂ ↑pm 𝑆))
20 taylfval.s . . . 4 (𝜑𝑆 ∈ {ℝ, ℂ})
21 cnex 9896 . . . . . 6 ℂ ∈ V
2221a1i 11 . . . . 5 (𝜑 → ℂ ∈ V)
23 taylfval.f . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
24 taylfval.a . . . . 5 (𝜑𝐴𝑆)
25 elpm2r 7761 . . . . 5 (((ℂ ∈ V ∧ 𝑆 ∈ {ℝ, ℂ}) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴𝑆)) → 𝐹 ∈ (ℂ ↑pm 𝑆))
2622, 20, 23, 24, 25syl22anc 1319 . . . 4 (𝜑𝐹 ∈ (ℂ ↑pm 𝑆))
27 nn0ex 11175 . . . . . . 7 0 ∈ V
28 snex 4835 . . . . . . 7 {+∞} ∈ V
2927, 28unex 6854 . . . . . 6 (ℕ0 ∪ {+∞}) ∈ V
30 0xr 9965 . . . . . . . . . . 11 0 ∈ ℝ*
3130a1i 11 . . . . . . . . . 10 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 0 ∈ ℝ*)
32 nn0ssre 11173 . . . . . . . . . . . . 13 0 ⊆ ℝ
33 ressxr 9962 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
3432, 33sstri 3577 . . . . . . . . . . . 12 0 ⊆ ℝ*
35 pnfxr 9971 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
36 snssi 4280 . . . . . . . . . . . . 13 (+∞ ∈ ℝ* → {+∞} ⊆ ℝ*)
3735, 36ax-mp 5 . . . . . . . . . . . 12 {+∞} ⊆ ℝ*
3834, 37unssi 3750 . . . . . . . . . . 11 (ℕ0 ∪ {+∞}) ⊆ ℝ*
3938sseli 3564 . . . . . . . . . 10 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 𝑛 ∈ ℝ*)
40 elun 3715 . . . . . . . . . . 11 (𝑛 ∈ (ℕ0 ∪ {+∞}) ↔ (𝑛 ∈ ℕ0𝑛 ∈ {+∞}))
41 nn0ge0 11195 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → 0 ≤ 𝑛)
42 0lepnf 11842 . . . . . . . . . . . . 13 0 ≤ +∞
43 elsni 4142 . . . . . . . . . . . . 13 (𝑛 ∈ {+∞} → 𝑛 = +∞)
4442, 43syl5breqr 4621 . . . . . . . . . . . 12 (𝑛 ∈ {+∞} → 0 ≤ 𝑛)
4541, 44jaoi 393 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑛 ∈ {+∞}) → 0 ≤ 𝑛)
4640, 45sylbi 206 . . . . . . . . . 10 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 0 ≤ 𝑛)
47 lbicc2 12159 . . . . . . . . . 10 ((0 ∈ ℝ*𝑛 ∈ ℝ* ∧ 0 ≤ 𝑛) → 0 ∈ (0[,]𝑛))
4831, 39, 46, 47syl3anc 1318 . . . . . . . . 9 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 0 ∈ (0[,]𝑛))
49 0z 11265 . . . . . . . . 9 0 ∈ ℤ
50 inelcm 3984 . . . . . . . . 9 ((0 ∈ (0[,]𝑛) ∧ 0 ∈ ℤ) → ((0[,]𝑛) ∩ ℤ) ≠ ∅)
5148, 49, 50sylancl 693 . . . . . . . 8 (𝑛 ∈ (ℕ0 ∪ {+∞}) → ((0[,]𝑛) ∩ ℤ) ≠ ∅)
52 fvex 6113 . . . . . . . . . 10 ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
5352dmex 6991 . . . . . . . . 9 dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
5453rgenw 2908 . . . . . . . 8 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
55 iinexg 4751 . . . . . . . 8 ((((0[,]𝑛) ∩ ℤ) ≠ ∅ ∧ ∀𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V)
5651, 54, 55sylancl 693 . . . . . . 7 (𝑛 ∈ (ℕ0 ∪ {+∞}) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V)
5756rgen 2906 . . . . . 6 𝑛 ∈ (ℕ0 ∪ {+∞}) 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V
58 eqid 2610 . . . . . . 7 (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) = (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))))
5958mpt2exxg 7133 . . . . . 6 (((ℕ0 ∪ {+∞}) ∈ V ∧ ∀𝑛 ∈ (ℕ0 ∪ {+∞}) 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ∈ V) → (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) ∈ V)
6029, 57, 59mp2an 704 . . . . 5 (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) ∈ V
6160a1i 11 . . . 4 (𝜑 → (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))) ∈ V)
623, 17, 19, 20, 26, 61ovmpt2dx 6685 . . 3 (𝜑 → (𝑆 Tayl 𝐹) = (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))))
63 simprl 790 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → 𝑛 = 𝑁)
6463oveq2d 6565 . . . . . . . 8 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (0[,]𝑛) = (0[,]𝑁))
6564ineq1d 3775 . . . . . . 7 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ))
66 simprr 792 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → 𝑎 = 𝐵)
6766fveq2d 6107 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) = (((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵))
6867oveq1d 6564 . . . . . . . 8 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) = ((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)))
6966oveq2d 6565 . . . . . . . . 9 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (𝑥𝑎) = (𝑥𝐵))
7069oveq1d 6564 . . . . . . . 8 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ((𝑥𝑎)↑𝑘) = ((𝑥𝐵)↑𝑘))
7168, 70oveq12d 6567 . . . . . . 7 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)) = (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))
7265, 71mpteq12dv 4663 . . . . . 6 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))) = (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))
7372oveq2d 6565 . . . . 5 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))) = (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))))
7473xpeq2d 5063 . . . 4 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
7574iuneq2d 4483 . . 3 ((𝜑 ∧ (𝑛 = 𝑁𝑎 = 𝐵)) → 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘))))) = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
76 simpr 476 . . . . . 6 ((𝜑𝑛 = 𝑁) → 𝑛 = 𝑁)
7776oveq2d 6565 . . . . 5 ((𝜑𝑛 = 𝑁) → (0[,]𝑛) = (0[,]𝑁))
7877ineq1d 3775 . . . 4 ((𝜑𝑛 = 𝑁) → ((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ))
79 iineq1 4471 . . . 4 (((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) = 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
8078, 79syl 17 . . 3 ((𝜑𝑛 = 𝑁) → 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) = 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
81 taylfval.n . . . . 5 (𝜑 → (𝑁 ∈ ℕ0𝑁 = +∞))
82 pnfex 9972 . . . . . . 7 +∞ ∈ V
8382elsn2 4158 . . . . . 6 (𝑁 ∈ {+∞} ↔ 𝑁 = +∞)
8483orbi2i 540 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ∈ {+∞}) ↔ (𝑁 ∈ ℕ0𝑁 = +∞))
8581, 84sylibr 223 . . . 4 (𝜑 → (𝑁 ∈ ℕ0𝑁 ∈ {+∞}))
86 elun 3715 . . . 4 (𝑁 ∈ (ℕ0 ∪ {+∞}) ↔ (𝑁 ∈ ℕ0𝑁 ∈ {+∞}))
8785, 86sylibr 223 . . 3 (𝜑𝑁 ∈ (ℕ0 ∪ {+∞}))
88 taylfval.b . . . . 5 ((𝜑𝑘 ∈ ((0[,]𝑁) ∩ ℤ)) → 𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
8988ralrimiva 2949 . . . 4 (𝜑 → ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
90 oveq2 6557 . . . . . . . . . 10 (𝑛 = 𝑁 → (0[,]𝑛) = (0[,]𝑁))
9190ineq1d 3775 . . . . . . . . 9 (𝑛 = 𝑁 → ((0[,]𝑛) ∩ ℤ) = ((0[,]𝑁) ∩ ℤ))
9291neeq1d 2841 . . . . . . . 8 (𝑛 = 𝑁 → (((0[,]𝑛) ∩ ℤ) ≠ ∅ ↔ ((0[,]𝑁) ∩ ℤ) ≠ ∅))
9392, 51vtoclga 3245 . . . . . . 7 (𝑁 ∈ (ℕ0 ∪ {+∞}) → ((0[,]𝑁) ∩ ℤ) ≠ ∅)
9487, 93syl 17 . . . . . 6 (𝜑 → ((0[,]𝑁) ∩ ℤ) ≠ ∅)
95 r19.2z 4012 . . . . . 6 ((((0[,]𝑁) ∩ ℤ) ≠ ∅ ∧ ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)) → ∃𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
9694, 89, 95syl2anc 691 . . . . 5 (𝜑 → ∃𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘))
97 elex 3185 . . . . . 6 (𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘) → 𝐵 ∈ V)
9897rexlimivw 3011 . . . . 5 (∃𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘) → 𝐵 ∈ V)
99 eliin 4461 . . . . 5 (𝐵 ∈ V → (𝐵 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↔ ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)))
10096, 98, 993syl 18 . . . 4 (𝜑 → (𝐵 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘) ↔ ∀𝑘 ∈ ((0[,]𝑁) ∩ ℤ)𝐵 ∈ dom ((𝑆 D𝑛 𝐹)‘𝑘)))
10189, 100mpbird 246 . . 3 (𝜑𝐵 𝑘 ∈ ((0[,]𝑁) ∩ ℤ)dom ((𝑆 D𝑛 𝐹)‘𝑘))
102 snssi 4280 . . . . . . . 8 (𝑥 ∈ ℂ → {𝑥} ⊆ ℂ)
103102adantl 481 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → {𝑥} ⊆ ℂ)
10420, 23, 24, 81, 88taylfvallem 23916 . . . . . . 7 ((𝜑𝑥 ∈ ℂ) → (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) ⊆ ℂ)
105 xpss12 5148 . . . . . . 7 (({𝑥} ⊆ ℂ ∧ (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘)))) ⊆ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
106103, 104, 105syl2anc 691 . . . . . 6 ((𝜑𝑥 ∈ ℂ) → ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
107106ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
108 iunss 4497 . . . . 5 ( 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ) ↔ ∀𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
109107, 108sylibr 223 . . . 4 (𝜑 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ))
11021, 21xpex 6860 . . . . 5 (ℂ × ℂ) ∈ V
111110ssex 4730 . . . 4 ( 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ⊆ (ℂ × ℂ) → 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ∈ V)
112109, 111syl 17 . . 3 (𝜑 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))) ∈ V)
11362, 75, 80, 87, 101, 112ovmpt2dx 6685 . 2 (𝜑 → (𝑁(𝑆 Tayl 𝐹)𝐵) = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
1141, 113syl5eq 2656 1 (𝜑𝑇 = 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑁) ∩ ℤ) ↦ (((((𝑆 D𝑛 𝐹)‘𝑘)‘𝐵) / (!‘𝑘)) · ((𝑥𝐵)↑𝑘))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ∪ cun 3538   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  {csn 4125  {cpr 4127  ∪ ciun 4455  ∩ ciin 4456   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036  dom cdm 5038  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551   ↑pm cpm 7745  ℂcc 9813  ℝcr 9814  0cc0 9815   · cmul 9820  +∞cpnf 9950  ℝ*cxr 9952   ≤ cle 9954   − cmin 10145   / cdiv 10563  ℕ0cn0 11169  ℤcz 11254  [,]cicc 12049  ↑cexp 12722  !cfa 12922  ℂfldccnfld 19567   tsums ctsu 21739   D𝑛 cdvn 23434   Tayl ctayl 23911 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-fac 12923  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cnp 20842  df-haus 20929  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-tsms 21740  df-xms 21935  df-ms 21936  df-limc 23436  df-dv 23437  df-dvn 23438  df-tayl 23913 This theorem is referenced by:  eltayl  23918  taylf  23919  taylpfval  23923
 Copyright terms: Public domain W3C validator