Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  intabs Structured version   Visualization version   GIF version

Theorem intabs 4752
 Description: Absorption of a redundant conjunct in the intersection of a class abstraction. (Contributed by NM, 3-Jul-2005.)
Hypotheses
Ref Expression
intabs.1 (𝑥 = 𝑦 → (𝜑𝜓))
intabs.2 (𝑥 = {𝑦𝜓} → (𝜑𝜒))
intabs.3 ( {𝑦𝜓} ⊆ 𝐴𝜒)
Assertion
Ref Expression
intabs {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑥𝜑}
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜑,𝑦   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem intabs
StepHypRef Expression
1 sseq1 3589 . . . . . 6 (𝑥 = {𝑦𝜓} → (𝑥𝐴 {𝑦𝜓} ⊆ 𝐴))
2 intabs.2 . . . . . 6 (𝑥 = {𝑦𝜓} → (𝜑𝜒))
31, 2anbi12d 743 . . . . 5 (𝑥 = {𝑦𝜓} → ((𝑥𝐴𝜑) ↔ ( {𝑦𝜓} ⊆ 𝐴𝜒)))
4 intabs.3 . . . . 5 ( {𝑦𝜓} ⊆ 𝐴𝜒)
53, 4intmin3 4440 . . . 4 ( {𝑦𝜓} ∈ V → {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑦𝜓})
6 intnex 4748 . . . . 5 {𝑦𝜓} ∈ V ↔ {𝑦𝜓} = V)
7 ssv 3588 . . . . . 6 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ V
8 sseq2 3590 . . . . . 6 ( {𝑦𝜓} = V → ( {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑦𝜓} ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ V))
97, 8mpbiri 247 . . . . 5 ( {𝑦𝜓} = V → {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑦𝜓})
106, 9sylbi 206 . . . 4 {𝑦𝜓} ∈ V → {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑦𝜓})
115, 10pm2.61i 175 . . 3 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑦𝜓}
12 intabs.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
1312cbvabv 2734 . . . 4 {𝑥𝜑} = {𝑦𝜓}
1413inteqi 4414 . . 3 {𝑥𝜑} = {𝑦𝜓}
1511, 14sseqtr4i 3601 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝜑}
16 simpr 476 . . . 4 ((𝑥𝐴𝜑) → 𝜑)
1716ss2abi 3637 . . 3 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝜑}
18 intss 4433 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝜑} → {𝑥𝜑} ⊆ {𝑥 ∣ (𝑥𝐴𝜑)})
1917, 18ax-mp 5 . 2 {𝑥𝜑} ⊆ {𝑥 ∣ (𝑥𝐴𝜑)}
2015, 19eqssi 3584 1 {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑥𝜑}
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {cab 2596  Vcvv 3173   ⊆ wss 3540  ∩ cint 4410 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554  df-nul 3875  df-int 4411 This theorem is referenced by:  dfnn3  10911
 Copyright terms: Public domain W3C validator