MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intexrab Structured version   Visualization version   GIF version

Theorem intexrab 4750
Description: The intersection of a nonempty restricted class abstraction exists. (Contributed by NM, 21-Oct-2003.)
Assertion
Ref Expression
intexrab (∃𝑥𝐴 𝜑 {𝑥𝐴𝜑} ∈ V)

Proof of Theorem intexrab
StepHypRef Expression
1 intexab 4749 . 2 (∃𝑥(𝑥𝐴𝜑) ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
2 df-rex 2902 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
3 df-rab 2905 . . . 4 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
43inteqi 4414 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
54eleq1i 2679 . 2 ( {𝑥𝐴𝜑} ∈ V ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
61, 2, 53bitr4i 291 1 (∃𝑥𝐴 𝜑 {𝑥𝐴𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  wex 1695  wcel 1977  {cab 2596  wrex 2897  {crab 2900  Vcvv 3173   cint 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-in 3547  df-ss 3554  df-nul 3875  df-int 4411
This theorem is referenced by:  onintrab2  6894  rankf  8540  rankvalb  8543  cardf2  8652  tskmval  9540  lspval  18796  aspval  19149  clsval  20651  spanval  27576  rgspnval  36757
  Copyright terms: Public domain W3C validator