Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenval Structured version   Visualization version   GIF version

Theorem igenval 33030
Description: The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Proof shortened by Mario Carneiro, 20-Dec-2013.)
Hypotheses
Ref Expression
igenval.1 𝐺 = (1st𝑅)
igenval.2 𝑋 = ran 𝐺
Assertion
Ref Expression
igenval ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
Distinct variable groups:   𝑅,𝑗   𝑆,𝑗   𝑗,𝑋
Allowed substitution hint:   𝐺(𝑗)

Proof of Theorem igenval
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 igenval.1 . . . . . 6 𝐺 = (1st𝑅)
2 igenval.2 . . . . . 6 𝑋 = ran 𝐺
31, 2rngoidl 32993 . . . . 5 (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))
4 sseq2 3590 . . . . . 6 (𝑗 = 𝑋 → (𝑆𝑗𝑆𝑋))
54rspcev 3282 . . . . 5 ((𝑋 ∈ (Idl‘𝑅) ∧ 𝑆𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
63, 5sylan 487 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
7 rabn0 3912 . . . 4 ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅ ↔ ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
86, 7sylibr 223 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅)
9 intex 4747 . . 3 ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅ ↔ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ V)
108, 9sylib 207 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ V)
11 fvex 6113 . . . . . . 7 (1st𝑅) ∈ V
121, 11eqeltri 2684 . . . . . 6 𝐺 ∈ V
1312rnex 6992 . . . . 5 ran 𝐺 ∈ V
142, 13eqeltri 2684 . . . 4 𝑋 ∈ V
1514elpw2 4755 . . 3 (𝑆 ∈ 𝒫 𝑋𝑆𝑋)
16 simpl 472 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝑟 = 𝑅)
1716fveq2d 6107 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (Idl‘𝑟) = (Idl‘𝑅))
18 sseq1 3589 . . . . . . 7 (𝑠 = 𝑆 → (𝑠𝑗𝑆𝑗))
1918adantl 481 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑠𝑗𝑆𝑗))
2017, 19rabeqbidv 3168 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠𝑗} = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
2120inteqd 4415 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠𝑗} = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
22 fveq2 6103 . . . . . . . 8 (𝑟 = 𝑅 → (1st𝑟) = (1st𝑅))
2322, 1syl6eqr 2662 . . . . . . 7 (𝑟 = 𝑅 → (1st𝑟) = 𝐺)
2423rneqd 5274 . . . . . 6 (𝑟 = 𝑅 → ran (1st𝑟) = ran 𝐺)
2524, 2syl6eqr 2662 . . . . 5 (𝑟 = 𝑅 → ran (1st𝑟) = 𝑋)
2625pweqd 4113 . . . 4 (𝑟 = 𝑅 → 𝒫 ran (1st𝑟) = 𝒫 𝑋)
27 df-igen 33029 . . . 4 IdlGen = (𝑟 ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st𝑟) ↦ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠𝑗})
2821, 26, 27ovmpt2x 6687 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ 𝒫 𝑋 {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ V) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
2915, 28syl3an2br 1358 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋 {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ V) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
3010, 29mpd3an3 1417 1 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  c0 3874  𝒫 cpw 4108   cint 4410  ran crn 5039  cfv 5804  (class class class)co 6549  1st c1st 7057  RingOpscrngo 32863  Idlcidl 32976   IdlGen cigen 33028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-grpo 26731  df-gid 26732  df-ablo 26783  df-rngo 32864  df-idl 32979  df-igen 33029
This theorem is referenced by:  igenss  33031  igenidl  33032  igenmin  33033  igenidl2  33034  igenval2  33035
  Copyright terms: Public domain W3C validator